IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003. 1

ClusterTree: Integration of Cluster
Representation and Nearest-Neighbor
Search for Large Data Sets with
High Dimensions

Dantong Yu and Aidong Zhang, Member, IEEE

Abstract—In this paper, we introduce the ClusterTree, a new indexing approach to representing clusters generated by any existing
clustering approach. A cluster is decomposed into several subclusters and represented as the union of the subclusters. The
subclusters can be further decomposed, which isolates the most related groups within the clusters. A ClusterTree is a hierarchy of
clusters and subclusters which incorporates the cluster representation into the index structure to achieve effective and efficient
retrieval. Our cluster representation is highly adaptive to any kind of cluster. It is well accepted that most existing indexing techniques
degrade rapidly as the dimensions increase. The ClusterTree provides a practical solution to index clustered data sets and supports
the retrieval of the nearest-neighbors effectively without having to linearly scan the high-dimensional data set. We also discuss an
approach to dynamically reconstruct the ClusterTree when new data is added. We present the detailed analysis of this approach and

justify it extensively by experiments.

Index Terms—Indexing, cluster representation, nearest-neighbor search, high-dimensional data sets.

1 INTRODUCTION

AN index structure organizes the whole data set to
support efficient queries. Recently, many applications
require efficient access and manipulation of large-scale
multidimensional data sets. For example, many features
extracted from image data sets are high-dimensional
vectors [20], [28]. Also, in bioinformatics, gene expression
data extracted from the DNA microarray images form
large-scale multidimensional data sets. The high dimen-
sions and enormous size of these data sets pose very
challenging problems in indexing of the data sets for
efficient querying. The design of indices to support high-
dimensional data access has become an active research area.

Many approaches have been proposed to index multi-
dimensional data sets. These approaches can efficiently
support nearest-neighbor search for relatively low dimen-
sional data sets [15], [3], [22]. Recently, most studies in
index design [6], [5], [30], [17], [4] focus on high-dimen-
sional data sets. Although most of these indexing strategies
can insert data points dynamically, their performance might
be affected by the insertion order of the new data points.
The problem with a dynamic index structure is that the
newly-inserted data points might cause that the structure
no longer efficiently manages the whole data set. It can
greatly increase the amount of data accessed for a query.
When the dimensions increase and the data set is very large,

e The authors are with the Department of Computer Science and
Engineering, State University of New York at Buffalo, Buffalo, NY
14260. E-mail: {dtyu, azhang}@cse.buffalo.edu.

Manuscript received 28 July 2000; revised 2 Mar. 2001; accepted 1 Oct. 2001.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 112626.

1041-4347/03/$17.00 © 2003 IEEE

<+

the efficiency for queries is a major consideration. To build
an efficient index for a large data set with high dimensions,
the overall data distributions or patterns should be
considered to reduce the affects of arbitrary insertions. In
some studies [12], [16], effective “packing” algorithms are
developed which optimize the existing dynamic index by
considering the data distribution.

Clustering is an analysis technique for discovering
interesting data distributions and patterns in the underlying
data set. Given a set of n data points in a d-dimensional
metric space, a clustering approach assigns the data points
to k groups (k << n) based on the calculation of the degree
of similarity' between data points such that the data points
within a group are more similar to each other than the data
points in different groups. In this approach, each group is a
cluster. Supervised clustering approaches normally require
a k, which is the number of groups, a priori, but not for
unsupervised clustering approaches. Many excellent clus-
tering algorithms were developed for discovering data
patterns, but little research exists to incorporate them into
index structures and similarity searches. Most index
structures based on partition split a data set independent
of its distribution patterns. These index structures have
either a high degree of overlapping between bounding
regions at high dimensions or inefficient space utilization.
We observed that cluster structures of the data set can help
build an index structure for high-dimensional data sets
which supports efficient queries [25]. This motivates us to
take into consideration the cluster information for indexing
large scale data sets with high dimensions, and design

1. The specific definition of similarity for the data sets may be application
dependent.

Published by the IEEE Computer Society

similarity search algorithms which can choose an efficient
searching order based on the structure of the data pattern.

In this paper, we present a novel dynamic indexing
approach which provides a compact cluster representation
to facilitate efficient querying. The indexing structure,
termed ClusterTree, is a hierarchy of clusters and sub-
clusters which incorporates the cluster representation into
the index structure to achieve efficient retrieval. Our cluster
representation is highly adaptive to any kind of cluster and
can detect a new trend in the data distribution. The data
points which are spatially close to one another are naturally
grouped together in the ClusterTree. The ClusterTree
provides a practical solution to index clustered data sets
and supports the retrieval of the nearest-neighbors effec-
tively and efficiently without having to linearly search the
high-dimensional data set. Our goal is to minimize the
response time to a user’s query. The ClusterTree is one of
the few that works towards building an efficient index
structure by utilizing cluster information for high-dimen-
sional data sets. We have conducted massive experiments to
evaluate the performance of the given approach and report
the comprehensive results. Our approach outperforms the
SR-Tree and Pyramid-Tree in both synthetic and real data
sets. The given approach can also be easily implemented in
multiple disks system (RAID) [31].

The rest of the paper is organized as follows: Section 2
summarizes recent work on index structure design. Section
3 introduces our cluster representation approach called
ClusterTree. Section 4 presents the query processing using
the ClusterTree. Section 5 discusses the efficient dynamic
reorganization of the ClusterTree. Section 6 presents the
experimental results. Section 7 gives the conclusion.

2 RELATED WORK

Existing multidimensional tree-like indexing approaches
can be classified into two categories: data and space
partitioning.

2.1 Data Partitioning
A data partitioning approach partitions a data set and
builds a hierarchy of bounding regions. Some examples of
this type of index structure are the R-tree and its variants,
the R*-tree and R*-tree [15], [3], which support the nearest-
neighbor search efficiently for low-dimensional data sets.

The R-Tree is a height-balanced tree with index records
in its nodes. There are two kinds of nodes: internal and leaf
nodes. The internal nodes contain pointers to their children,
and the leaf nodes contain pointers to data objects. All the
nodes have minimum bounding rectangles (MBR) as a page
region. Each internal R-tree node contains a set of at most
M children and at least [4/] children. One disadvantage of
R-trees is that the bounding boxes (rectangles) associated
with different nodes may overlap. Therefore, when we
search an R-tree, instead of following one path, we might
follow multiple paths down the tree, although some
branches do not contain relevant data.

The R*-tree is an R-tree variant which has the following
properties:

e Forced reinsert reduces the overlapping between the
minimum bounding rectangles (MBR) of neighbor-
ing nodes.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

e Storage utilization is improved.

e The volume of the MBRs is reduced.

When a point is inserted into a node, if there is no MBR in
this node containing the point, the point will be inserted
into a node with the least enlargement of the overlapping.
Furthermore, splitting of a node can be avoided by forced
reinsert. The performance of the R*-tree is improved by
about 70 percent over the R-tree.

The X-Tree [6] is an R*-Tree-based index structure [3]
which avoids the degeneration of the directory in high-
dimensions using a special split algorithm and variable
sized directory nodes. The X-Tree outperforms the R-Tree
and the R*-Tree significantly.

The SS-Tree [30] is a similarity indexing strategy for
high-dimensional data sets. In contrast to the R-Tree, it uses
hyperspheres as region units. Queries on the SS-Tree are
very efficient because it only needs to calculate similarity
between a region and the query point. For the insert
operation, the SS-Tree is traversed by choosing the child
nodes whose centroids are closest to the insert data point
first. A lazy recalculation of the radius and centroid is
designed to improve the insertion efficiency. When the
chosen node for insertion overflows, the SS-Tree uses a
forced reinsert similar to the R*-Tree. It removes 30 percent of
the children with the greatest distance from the centroid
and reinserts them back into the SS-Tree using the same
insert algorithm. If the children of the chosen node have
already been reinserted, the node must be split. The split
algorithm simply chooses the dimension with the highest
coordinate variance between the centroid and the children’s
centroids, and finds a splitting location which minimizes
the sum of the variances on each side of the split plane.
Compared with the R*-Tree, the SS-Tree has higher fanout
because the hyperspheres for regions require half the
storage space of the hyperrectangles. The SS-Tree outper-
forms the R-Tree and its variants on insertion and query as
the dimensions increase.

The SST™-Tree [19] is a variant of the SS-Tree with a
modified splitting heuristic to optimize the bounding shape
for each node. Instead of finding a splitting plane having
the maximum variances on both sides, the SS™-Tree uses
the k-means cluster algorithm to divide the overflow node
into two children. Therefore, the splitting method in the
SS*-Tree reflects the data clustering and leads to less
variance within the siblings when compared with the SS-
Tree. To decrease the volume of the bounding shape for
each node, the SS*-Tree uses the golden ratio method [29]
to approximate the optimized data centroid for the node.

The SR-Tree [17] is a new index structure which combines
the bounding spheres and rectangles for the shapes of node
regions to reduce the blank area. The region for a node in the
SR-Tree is represented by the intersection of a bounding
sphere and a bounding rectangle. Thus, the overlapping area
between two sibling nodes is reduced, particularly for high
dimensions. The SR-Tree takes the advantages of both
rectangles and spheres, and enhances the query performance
remarkably. However, the storage required for the SR-Tree is
larger than the SS-Tree because the nodes in the SR-Tree need
to store the bounding rectangles and bounding spheres.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 3

Consequently, the SR-Tree requires more CPU time and more
disk accesses than the SS-Tree for insertions.

Another example of data partitioning is the M-Tree [10],
which organizes and searches the data based on a distance
function, where the distance metric is not limited by L,
norm. M-Tree considers relative (dis)similarity between the
data objects.

2.2 Space Partitioning

Space partitioning approaches divide a data space into
disjoint subspaces. A hierarchy of subspaces can be
generated from the process of dividing.

The K-D-B Tree [22] is one of the earliest multidimen-
sional index structures based on space partitioning. It
partitions a d-dimensional data space into disjoint sub-
spaces by (d-1)-dimensional hyperplanes which are alter-
nately perpendicular to one of the dimension axes.
Therefore, the subspaces are represented by hyperrectan-
gles based on comparison with one element of a single
domain. The K-D-B Tree forces splitting to maintain a
balanced structure. That is, an overflow node will be split.
Splitting can be propagated to the descendants because the
descendants of the node may intersect with the splitting
plane. This recursive splitting might cause sparse or empty
nodes, thus optimized storage utilization cannot be guar-
anteed. Complete partitioning in the K-D-B tree generates
many page regions and becomes exponential as the
dimensions increase.

The Pyramid-Tree [5] is based on a special partitioning
strategy which focuses on high-dimensional data sets. The
basic idea is to divide the data space first into 2d pyramids,
each sharing the center point as its peak (the tip point of a
pyramid). Each pyramid is then sliced into slices parallel to
the base of the pyramid, and each slice forms a data page.
The range query under this index structure can be
efficiently processed for both low- and high-dimensional
data sets, and is not affected by the so-called curse of
dimensionality when the data distribution is uniform. The
Pyramid-Tree outperforms the X-Tree [6] by a factor of up
to 800 in terms of the response time for queries. However,
the partitioning of the Pyramid-Tree cannot ensure that the
data points in one data page are always neighbors. The
slices close to the center contain the data points which are
close to each other, while the slices close to the base of the
pyramid may contain the data points which are not similar.
The queries touching the boundary of the data space cannot
be handled efficiently. Since the slices do not have simple
shapes like hypersphere or hyperrectangle, it is very hard to
estimate the distance between a query point and the slices,
thus the k-nearest-neighbor search might not be supported
efficiently. Also, the performance of the Pyramid-Tree is
affected by data distributions. The extended Pyramid-Tree
chooses the center of the data distribution as the top of the
pyramids for better performance. But, when the data
distribution is arbitrary, it is very hard to locate the center
of the data space.

The Hybrid-Tree [9] combines positive aspects of both
K-D-B Tree and R-Tree index structures into a single data
structure to achieve good performance scalable to high
dimensions. Recently, DBIN [4] was developed, which is
one of a few indexing algorithms that can incorporate
cluster information in the nearest-neighbor search.

3 CLUSTERTREE AND ITS CONSTRUCTION

In this section, we will first introduce the hierarchical
structure of the ClusterTree. We will then present an
approach to decomposing a cluster into subclusters and
the algorithm to generate a ClusterTree by decomposing
clusters recursively.

3.1 The ClusterTree

A ClusterTree is a hierarchical representation of the clusters
of a data set. A ClusterTree organizes the data based on
their different levels of clustering information, from coarse
to fine, providing an efficient index structure of the data.
Each nonleaf node in the ClusterTree is defined as:

Node: [Node_id,y,(Entry, ,Entrys -, Entry,)]

(8Ci,BS;,SN;),

(Maode <Y< Mpode),

Entry;:

where Node_id is the node identifier, ~ is the number of the
entries in the node, and m,,,4. and M,,,q. define the minimum
and maximum number of entries in the node. An entry is
created for each subcluster of the cluster which the current
nonleaf noderepresents. Inentry Entry;, SC, is a pointer to the
ith subcluster, BS; is the bounding sphere for the subcluster
and SN; is the number of data points in the ith subcluster. The
bounding sphere is represented by (c, r), where cis the center
and r is the radius.

Each leaf node contains pointers to the data points and
has the structure:

Leaf :[Leaf_id,~, (Entry,, Entrys, - - -, Entry.)]
(mleaf < v < Mleaf)7

where v is the number of data points contained in the leaf
node, and M.,y and M.,y are the minimum and maximum
number of entries. Entry; contains the address of the data
point residing in the secondary storage. If we store all the
data points belonging to the same leaf node in linear array-
like style, then for each leaf node, only the first and last
entries need to be saved. All data points that belong to the
leaf node are saved between the first and last data points.
Furthermore, I/O time can be greatly reduced by bulk-
loading disk blocks which contain the sequentially stored
data points. If the data points are randomly saved in the
storage media, their addresses will be saved in the leaf
node. This provides the flexibility of building index
structure without physically moving the data points. We
define the level of a node in a ClusterTree as the length of
the path from the root to this node, beginning with 0. It is
desirable that a ClusterTree is balanced so that the levels of
the leaf nodes are approximately equal.

3.2 Cluster and its Representation

Let the input data set consist of d-dimensional points which
are already clustered. For the input data without cluster
information, we can apply the cluster algorithms in [14],
[21], [26], [27] to detect clusters. For each cluster, we
calculate the following parameters: The number of data
points, the centroid ¢, and the volume of the minimum
bounding sphere S. The centroid ¢ = (¢, ¢, -+, ¢4) can be
calculated by:

(a) (b)

Fig. 1. Decomposition of cluster C. (a) Original cluster C. (b) Decom-
posed cluster C.

N
o = _j-19;

' N
where N is the number of the data points in the cluster and
o, is the ith value of data point o; in the cluster. Thus, each
cluster is represented by a hypersphere S.

1 <i<d, (1)

3.2.1 Splitting a Cluster

Due to the arbitrary distribution of the data set, the data
points within a cluster may have arbitrary shape. The
sphere used to represent the cluster must be big enough to
cover all the data points in the cluster. Within the sphere,
there may be some empty regions which contain no data.
When the dimensions go higher, the empty regions will
occupy most of the space bounded by the sphere. Also, two
bounding hyperspheres of two different clusters may
overlap, even though the two clusters do not intersect. For
the data points which belong to only one cluster, the
bounding sphere of the other cluster may contain them,
which may lead us to make wrong decision of the clustering
information about these data points. Thus, the overlapping
between two hyperspheres might cause inaccuracy.

For example, to cover the cluster C' in Fig. 1a, a sphere S
centered at c should at least have radius r. Here, we define
the density of the cluster as:

number of points in C

Density, =
cnsttye volume of S

_ number of points in C

9 7d/2pd

dr(4)

The gamma function I'(z) is defined as:

F(m):/ t" e tat,
0

where I'(z 4+ 1) = 2I'(z) and I'(1) = 1. When the number of
dimensions is high (>20) and r > 1, the volume of a
hypersphere can be huge. The density will be close to 0.
Thus, we simplify the volume of S as: vol(S) = r'°¢?. When
the density of a cluster falls below a preselected threshold
or the number of the data points in the cluster is larger than
a preselected threshold, the cluster will be decomposed into
several smaller clusters. We call them subclusters. The
subclusters can be further decomposed to obtain more
compact representation. We can split a big cluster by
expanding a k-medoid method [21] (see below). Fig. 1b
shows how a cluster can be decomposed.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

3.2.2 k-medoid Algorithm to Split a Cluster

The selection of k-medoids is crucial in the k-medoid
algorithm. An efficient and effective algorithm for selecting
the k-medoids must preserve these conditions:

e Representativeness. k medoids must well represent the
whole data set.

e Minimum distance. The distance of each data point to
its medoid should be as small as possible.

e Balance. The partition of the data set by these
medoids should be balanced.

e Efficiency. The quadratic and more expensive algo-
rithm for selecting medoids should be avoided.

The optimal algorithm for searching the best medoids is
to examine all candidate combinations of £ data points from
the cluster which contains n data points (k << n). Given
each candidate set of k-medoids, for each data point in the
cluster, calculate the distance between the data point to its
closest medoids in the candidate set. The time complexity
for examining all the k-combinations in the cluster and
choosing the closest medoid for each data point is:

(Z)-k(n—k)

Some improvement has been made, such as PAM in [18],
but it needs to search for a minimum on the graph G,
where G, represents the searching model. For large values
of n and k, examining all nodes in the graph is time
consuming and accounts for the inefficiency of PAM to deal
with very large clusters.

We now present an approach to split a cluster using &
medoids. We measure the performance of splitting a cluster
by the inverse of the total volume of all subclusters
generated by that splitting, i.e.,

1
S ¥ vol(Cluster;)’

where vol(Cluster;) calculates the volume of Cluster; and
equals the volume of the subcluster’s bounding sphere.
That is, the cluster partition based on the subclusters with
the minimum volumes will be better because it always has
smaller overlapping and provides a compact representation
for the cluster.

k-medoids determination. The greedy method presented
in [13], [1] can be used to select the good medoids. We first
randomly select k& x A points from the cluster and put them
into a sample set. We refine the sample set to form a
candidate medoid set A in which every medoid should be
as far away as possible from each other. The optimal
selection strategy is an NP problem for nonfixed k. We use a
heuristic algorithm to solve the problem. First, we ran-
domly pick a data point o and put it into the set .4 of the
candidate medoids. Then, we calculate the distance of each
data point in the sample set to the data point o, choose the
data point with the maximum distance, put it again into the
candidate set A, and recompute the distance from each
point in the sample set to its nearest medoid. We continue
to do this until the 4 x k points have been chosen for A.

The hill-climbing algorithm in [21] is used to choose the
best k-medoids to decrease the total volumes of all

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 5

[Begin }
Original date set DB’ | DBJ=n
[Randomly sample }
Sampleset R | |R =k),
[Refine samples J

Candidate set A| | Al]=4 * k

[Select mediods]

J

[Generate Balanced Subclusters }

k-mediod set M ’ | M=k

[Evaluate k-mediods }

| Output k mediods and subclusters ‘

Fig. 2. Decomposition of a single cluster into & subclusters.

subclusters, and thus improve the performance. Using the
same method of choosing the candidate set .4, we can
efficiently generate an initial k-medoid set. To refine this k-
medoid set, we first pick the subcluster with the lowest
density or the minimum number of data points. A
subcluster, (SC), may have very low density or be very
small, because:

1. the subcluster is formed by outliers,
SC is part of a natural subcluster SC' and the
majority of data points in SC' have been assigned
to another subcluster SC”, or

3. &C is likely distorted by outliers or the data points
which may falsely be assigned to SC.

We choose a new medoid from the remaining points in the
candidate set to replace the bad medoid, and repeat the
evaluation procedure until the performance does not
change. After k-medoids are chosen, we assign each data
point in the cluster to the closest medoid. This partition of
the data points in a cluster will generate k subclusters. But
this partition might generate unbalanced structure, which
greatly affects the performance of the ClusterTree. In the
following section, we present a balancing algorithm of
redistributing data points to prevent this happening. Fig. 2
describes the procedure of generating k subclusters.

3.2.3 Generating Balanced Subclusters for a Cluster

The above approach does not necessarily generate a
balanced partition for the cluster. Nonbalanced partitions
and the inferred index structure are not efficient in terms of
time and space. The worst case of the unbalanced partitions
would be among all of the partitions (subclusters), only one
subcluster is significant because most of the data points are
aggregated into it and all of the other subclusters are trivial.
Such unbalanced partitioning may occur repetitively in the
further splittings. As a result, the height of the splitting is
linearly comparable to the size of the cluster. The
performance of a search on the unbalanced index structure
is highly unpredictable. The extreme case would be a linear

search through the whole data set. Fig. 3a describes the
unbalanced partitions and the generated index structure.

It is unlikely to always satisfy all of the criteria listed in
Section 3.2.2 for a good k-medoid partition because the
minimum distance criterion may conflict with the balancing
requirement. Thus, we describe a heuristic algorithm (Fig. 4,
Algorithm 3.2.3) that balances these two criteria. The input
to the algorithm is a k-medoid set. The output is k nearly
balanced subclusters. We do not generate the subclusters
with exactly the same size because it would destroy the
structure of the subclusters. In Algorithm 3.2.3, Step 1
assigns each data point in cluster C to its closest subcluster.
Step 2 checks whether there is a subcluster which includes
more than half of the data points. We know that there is at
most one subcluster whose size can exceed 3, where n is the
number of the data points in cluster C. At Step 3, we shrink
the size of the biggest subcluster SC; by picking the data
points which fall far away from their medoid m; and
reassigning them to other subclusters. One method is to sort
all of the data points by their distances to the medoid, and
then pick |SC;| — 27 data points with the longest distance.
The general sorting algorithm takes about O(n logn) time. If
the data set is huge, sorting is time consuming. We use
algorithm SELECT" in [11] to decrease the size of SC;. Given
¢ and an array A, SELECT returns the ith smallest elements
of the array A. It was proved in [11] that the average time
complexity of SELECT is linear. Let D(SC;) be the array of
the distances between the data points in SC; and the medoid
my, the median distance d,,,.q of D(SC;) is calculated as:
dpea = SELECT(D(SC;), |5]). Then, the data points are
divided into two groups: G; and G where G =
{0|d(07 my) > dmcd} and Gy = S8C, — G4. Let 8C; = G5. We
shrink the size of SC; to be smaller than %.

In Algorithm 3.2.3, the function ChooseOther Mediod is
used to pick a new subcluster for a data point. The selected
subcluster should be as close as possible to the data point.
Also, the subcluster selected for insertion needs the least
enlargement to include the data point. After insertion, the
number of data points should still be below . Thus,
Algorithm 3.2.3 is guaranteed to generate k subclusters
whose sizes are all smaller than .

3.3 Algorithm for Building ClusterTree

We now present an algorithm to build a height-balanced
ClusterTree. Algorithm 3.3 gives the details of generating a
ClusterTree. In Algorithm 3.3, pageSize is determined by the
disk block size (M) and the size of a data point (&), where
& = dimensions x sizeof(element of a data point). pageSize
can be calculated by the formula: pageSize = % .Stackis used
to store the nodes which need to be processed. While the stack
is not empty, the node on top of the stack will be popped. The
child nodes will be created for each of the entries belonging to
the popped node. If some of the child nodes need to be further
split, then they will be pushed into the stack. When the stack is
empty, which means that all of the nodes are processed, the
procedure of creating the ClusterTree is finished.

Height of ClusterTree. A balanced partitioning algo-
rithm was introduced in Section 3.2.3. Using it at Step 3-¢ in
Algorithm 3.3, (see Fig. 5) we can generate k roughly

2. We use |A| to denote the number of elements in set A(cardinality).
3. See Appendix A.

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

Fig. 3. (a) An unbalanced tree can cause a linear search over the whole data set. (b) A balanced partition for the cluster.

balanced subclusters whose sizes are no more than half of
the parent cluster’s. After the partitioning algorithm is
applied O(log N) times, where N is the size of the whole
data set, the number of data points in each leaf node
becomes equal to or less than the constant pageSize. Thus,
the maximum height of the ClusterTree is O(log N).

The medoid selection method in Section 3.2.2 theoreti-
cally leads to balanced splitting [1]. In practice, the splitting
method might still create trivial leaf nodes which contain
few data points. We can apply a simple postprocessing
technique to merge all of the leaf node whose disk block
utilization is no more than %x PageCapacity. So, several
trivial leaf nodes may be merged into one leaf node which is
inserted to the parent node.

4 SIMILARITY QUERIES

Similarity queries can be classified into two categories:
range queries and p-nearest-neighbor (p-NN) queries. The
definitions for these two categories are given in [24]:

Definition 1. (Range query). Given a query point q and a range
parameter e. The result set NN.(q) for the range query in data

set DB is defined as: NN.(q) = {o|d(q,0) < e and o € DB},
where d is a distance measurement.

Definition 2. (p-NN query). For a query point q and a query
parameter p, the query returns the smallest set NN?(q) C DB
that contains p data points from the data set, and for which the
following condition holds:

VYo € NN?(q),Vo' € (DB — NN”(q)) : d(o,q) < d(d',q).

4.1 BRange Query

A range query is represented as a sphere which is centered
at q with radius e. In the ClusterTree structure, the range
query should be performed in the related clusters which
intersect the query. There is a high probability that the
query will intersect several clusters, so these clusters can be
selected simultaneously. Other clusters which do not
intersect with the query sphere will not be considered. We
perform a recursive search in each cluster. Fig. 6 shows how
to do a query. At the first level, the query sphere intersects
with three clusters A, B, and C. So these three clusters will
be searched. Cluster A has four subclusters, of these, only

Algorithm 3.2.3: Generate Subcluster

l.foreacho€(C,1<j<n
a. calculate its close medoid m;

Input: k-medoid set M for a cluster C, |C| =n
Output:k semi-balanced subclusters {SC1,SCa,...,SCy} for C

Fig. 4. Algorithm 3.2.3.

b. increase the number of points in SC;, i.e. |SC;| = |SC;| + 1
2. Get the maximum subcluster SC;, where for any 1 < i < k, |SC;| < |SCy|
if |SC;| < % then return; else goto step 3.
3. Decrease the number of data points in SC; as follows:
a. dmed = SELECT(D(SC[) I_%J)
b. for cach data point o € SC;
if d(o,my) > dpeq
x = ChooseOther Mediod(M, o),
Put o in SC,, and |SC,| = |SC,| + 1.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 7

Algorithm 3.3: Build ClusterTree
Input : § clusters {C1,Cs,...C3}
Output: Index structure for the § clusters
1. Generate a root to represent all clusters;
Create an entry £; for each cluster C;, add them into the root node;
Push the root into Stack.
2. if Stack is not empty, currentN ode = pop(Stack) and goto step 3;
else return;
3. for each entry Entry; in currentNode, where 1 < i <y
if Entry;.SN < pageSize then
a. Create a leaf node child; for Entry;.
b. Let the pointer SC; in IEntry; point to child;.
¢. Save dala points (o disk pages.
else
a'. Create a non-leaf node child; for Entry;.
b'. Let the pointer SC; in Entry; point to child;
!. generale k-medoids, create k subclusters child;, 1 < i < k.
d'. Create an entry for each subcluster and add them to child;.
'. Push child; into Stack.
4. goto step 2.

o]

o

Fig. 5. Algorithm 3.3.

A4 intersects with the query sphere. Of the subclusters of B,
only subcluster B4 intersects with the query sphere. At the
bottom of the ClusterTree, we only need to search
subclusters A4 and B4. By checking the data points in the
two subclusters, B4 has three points within the query range.
Thus, B4 will be selected as the most related cluster and the
query result set NN.(q) is {ry,rs,r3}.

4.2 p-Nearest-Neighbors Query

4.2.1 Distance Measurement for Nearest-Neighbor
Search

Given a query point q and a ClusterTree, the search will look
through the nodes of the ClusterTree to find the p-Nearest-
Neighbors. We provide three distance measurements for
ordering the nodes involved in the search: the average
distance (dy,), the maximum distance (d,q.), and the
minimum distance (d;,) between q and the bounding
hypersphere of a node, where d,,;,, and d,,,, give the lower
and upper bounds on the actual distance of q from data points
in the node, and d,,,,- estimates the average distance of q from
data points in the node. When we traverse the ClusterTree,
the three distance measurements are needed to prune the
search paths within the ClusterTree. These measurements are
defined as follows (Sphere(c, r) is the bounding sphere of the
node, which is centered at ¢ with r as the radius.):

dawr(q, Sphere(c,r)) = d(q, c),
d’”L(lflf (q7 Sphe/r.e(c7 7l‘.)) = d(/U7 C) + T'?
d(q,c) —r if d(q,c) >,

dmin((L Sph,ere(ca T)) - { 0 otherwise.

We define the average distance between an entry in a
node and the query point as:
dawr (g, Entry(SC, BS, SN)) = daw(q, BS).

Similarly, we can define the maximum and minimum
distances between an entry and the query.

Fig. 6. A range query is performed by recursively traversing the
hierarchical structure.

The p-NN query can be converted to a range query,
given that we can find a threshold d, such that NN?(q) C
NNy, (q) and Vd," < d,, NN?(q) Z NN, (q), where

max {d(o,q)}.

d, =
’ 0eNN?(q)

If the minimum threshold d, is known in advance, then the
problem can be solved using a range query, but d,, is normally
unknown in advance. By specifying a threshold d, for a range
query, we can still perform the p-nearest-neighbor query.
However, the selection of the threshold d), is difficult because
users may not know the data setin detail and the dissimilarity
cannot alwaysbe smoothly mapped into a distance parameter
d, in the Euclidean metric. If d,, is too small, then not enough
data will be retrieved. If d,, is too big, then many unnecessary
nodes in the ClusterTree will be checked. The selection of d,,
plays a crucial role in the efficiency of the query algorithm.
The following property can help in adjusting the value of d,.

Property 1. For a given query q and data set DB, if [NN(q)| > p,
then NNP(q) C NN.(q) and €> D,, where D, is the
minimum value of d, and D, = maxee ynr(q {d(0,q)}.

Proof. Suppose NN?(q) Z NN.(q). There exists a data point
r such that re€ NN?(q) and r ¢ NN.(q). Because
|[NN:(q)| > p, there also exists a data point r’ such that
r' € NN.(q) and r' ¢ NN?(q). Therefore,

d(r',q) < d(r,q),

which contradicts the definition of the p-nearest-
neighbors. 0

There might be more than one data point sharing the
same pth distance to the query point q, so the p-nearest-
neighbor set N N”(q) might not be unique. In this case, most
implementations nondeterministically pick some data
points with the pth distance value. Property 1 still holds
for all of the possible p-nearest-neighbor sets. We provide
the following algorithm to initialize the d,,.

First, it sorts all entries in the root in increasing order of
the maximum distance d,,,,, between an entry and the query
q. Then, it scans the entries and sums up the number of data
points in them until it reaches an entry Entry; such that the

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

total number of data points in the scanned entries exceeds
the query parameter p. Based on Property 1, we know that
dmaz(a, Entry;) > D,. The initial value of d, will be set to
dmaz(a, Entry;). In the rest of this section, we will discuss
the p-nearest-neighbors query based on the range search.
Our goal is to minimize the number of accessed nodes.

We start from the root of the ClusterTree with the rough
estimate of the threshold d, and perform a depth-first
search until the leaf level is reached. During the traversal,
we prune many nodes based on their distance to the query.
Also, while traversing the ClusterTree, based on the
information available at each node, we dynamically adjust
the value of d, so that it approaches D,. This further helps
in pruning more nodes to improve the efficiency.

We make use of Property 1 to adjust the value of d,. Let
the current search range be a hypersphere with the center q
and having radius d,, denoted by Sphere(q, d,). Recall that
every internal node V' stores the information (SC;, BS;, SN;)
for each of its children. We prune nodes and decrease the
current threshold d, according to the following two rules:

1. Prune. At an internal node V, for each child child;,
consider BS;. If d,,;,,(q, BS;) > d,, then we prune the
subtree rooted at child; because none of the data
points corresponding to child; lie inside the query
sphere.

2. Adjust. For each child child; in an internal node V,
if dine.(q,BS;) <d, and the number of the data
points that belong to this entry is greater than p,
then d, can be replaced by d,..(q, BS), because
NNP(q) € NNy, .(q.85(a), according to Property 1.
If the node is a leaf and its data points are within
Sphere(q, d,), then the data points are inserted into
a result buffer and d, is updated.

4.2.2 Nearest-Neighbor Search Algorithm for

ClusterTree

We now present a revised branch-and-bound algorithm
which finds the nearest-neighbors, discuss the efficiency
of the search algorithm based on d,, and d,,; ordering,
address the disadvantages of both orderings and, finally,
provide a combined search algorithm for nearest-neighbor
search to enhance the pruning efficiency.

Search order among siblings. The order of visiting the
sibling branches rooted at the current node can affect the
efficiency of pruning. If the branch close to the query is
picked first, the threshold d, can be decreased. When the
search later comes to another sibling branch which is
further than the previous one, this branch can be pruned
immediately. Therefore, the search ordering should reflect
the probability that the nodes contain the query’s results,
and the nodes with high possibility should be searched first.
Usually, the possibility for a node containing the query
results is estimated by the minimum distance d,,, or
average distance d,,,. The search algorithm using minimum
distance based ordering is called minimum distance based
search(MDS), and the one using average distance based
ordering is called average distance based search(ADS).

There are other factors affecting the accuracy of using the
distances d,;,, o1 dq, to estimate the possibility for a node to
contain the query results, such as the layout of a node or the

\
/

[}
% Query Pointq

The NN is somewhere in there

Fig. 7. Both d,,, and d,,;;, cannot give good ordering.

data distribution within the node. When the data layout in a
node is compact, there is a high probability (confidence)
that some data points are located on the border region close
to the query point. d,,;, can give a good estimate of the
distance between the query point and its nearest points
within the node. d,,;, shows better performance in [23]
because when the dimensions are low, R-tree is very
efficient and nodes are relatively compact. But when the
node is sparse, the d,,;, cannot give a good estimation (see
example in [23]). For these types of nodes, the center of the
bounding sphere has a relatively higher concentration of
data points compared with the surface of the bounding
sphere. Only when the query is close to the centroid, will it
have a high chance of obtaining more neighboring points
from this node. Therefore, the average distance d,, has
better estimation of the possibility than d,;,, in this case.

Even in a single index structure, neither d,,;,, nor d,, has
uniformly good estimation on the search order because the
nodes in an index structure do not have the same data
distribution. In Fig. 7, dpin(q,51) < dmin(dg,S2), and
o (a, S1) < dawr(q, S2). Both MDS and ADS will choose
Sy first, which does not contain the nearest-neighbors.
Therefore, we define an optimized distance d,, to
determine the search order:

dopi(a, Sphere(c,r)) = wy - dpin(q, Sphere(c,))
+ wy - daywr (g, Sphere(c, 1)),

where pis the density of Sphere(c,), w; = p%, and wy = pﬁ
Here w; + wy = 1. We use p to represent the compactness of
the nodes. As we can see, when the density p increases, the
weight of d,,;, increases, so d, plays an important role in
determining the possibility. When the density decreases, d,
is chosen for the distance between a query point and the node.
The search algorithm which uses the optimized distance d,,
based ordering is called optimized distance based search(ODS).
In Fig. 7, S| has a very low density and S; has a much higher
density than Si. dop(q, S1) ~ daw(a, S1),

dopt(q7 SQ) ~ dmin((L 52)7 dmin(q’ SQ) < d(Wy’(Qa 51)7

therefore, doy(q,S1) > dope(q, S2) and Sy will be chosen first
for the nearest-neighbor search. Later, in the experiment
section, we will compare these three distance metrics.
Traversing order in the whole ClusterTree. Our p-NN
algorithm uses the depth-first search instead of the breadth-
first search because it has better pruning capability. When
the search goes down from the root to the leaf, the radii of
the bound spheres will become smaller and the precision of
bounding spheres will increase gradually. The depth-first
search can quickly sink to the bottom of the ClusterTree. As

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 9

Algorithm 4.2.2: Depth-First Search for p-NN
Input: A query point q and p
Output: Sorted array storing the N N¥(q)

c. Set dp, = InitialThreshold(root,q) .

b. current Node = current Entry.SC
c. if the type of current N ode is leaf
then
for each data point o in currentNode
dist = d(o,q);
if dist < d, and buf ferSize <p
then
Insert o into buffer
buf ferSize = buf ferSize+ 1.
else if dist < dp and buf ferSize =p

Insert o into Buffer

if buf ferSize = p then

for each entry F; in currentNode,
if oz (q, E;) < dpand p <|SN;

4. goto step 2.

1. a. Sort the entries of the oot in decreasing order of distance d,,,; between the entries and the query q.
b. Push all of the entries onto Stack in decreasing order of d, ;.

2. if Stack is not empty, current Entry = pop(Stack) and goto step 3; else return;
3. a. if dypin (q, current Entry) > d, then goto step 2.

Delete the point from Buffer with the maximum distance to q

dp will be assigned as the distance between the query q and the p-th neighbor.
else if the type of currentN ode is internal node

4 then dj, = dpaz(q, E;).
Sort the entries of currentNode in order of d,,; between the entries and the query q.
Push all of the entries onto Stack in decreasing order of dy .

Fig. 8. Algorithm 4.2.2.

soon as the first k data points are retrieved, we have more
precise knowledge about the distance threshold d,. There-
fore, d, can be adjusted optimally in the depth-first search.

Compared to the branch-and-bound algorithm proposed
in [23], our depth-first search combines downward pruning
and upward pruning into a simple one, named sibling
pruning. It uses a stack to capture the kernel concept of the
depth-first search. Because the threshold d, can be changed
optimally in the depth-first search, sibling pruning can still
be as effective as the two prunings in [23]. The algorithm is
listed in Fig. 8.

Algorithm 4.2.2 gives the steps of the depth-first search.
Stack is used to save the entries in a node, where the entries
correspond to the branches in the ClusterTree containing
potential nearest-neighbors. By saving the entries of a node,
the algorithm can prune many branches without loading
the children of the node. The function InitialT hreshold in
Algorithm 4.2.2 is used to set the initial value of the
threshold d,,.

5 DyYNAMIC INSERTION

An index structure must handle the dynamic insertion of
new data points, which may require that the underlying
clusters be adjusted. Most clustering approaches cannot add
new data points efficiently, which greatly limits the
flexibility of the clustering approaches. Dynamically insert-
ing any kind of data point into the ClusterTree should be
supported because the data sets may need to be updated.

However, statically organized structures are normally more
optimized than dynamically organized ones and, conse-
quently, support queries more efficiently.

When a new data point is inserted into the cluster, it may
perturb the whole structure of the index built on top of the
cluster. We divide the new data points into three categories
according to the degree of their perturbation on the clusters:

e Cluster points: are either the duplicates of or very
close to some data points in a cluster within a given
threshold, and can be safely inserted into the leaf
nodes without changing the structure of the cluster
and its subclusters.

e Close-by points: are the data points which are
neighbors to some points in the clusters within a
given threshold. They can be inserted into some
clusters with slight changes in the shape of the
cluster or its subclusters within the given threshold.

e Random points: are the data points which are either
far away from all of the clusters and cannot be
bounded by any bounding sphere of the ClusterTree,
or might be included in the bounding spheres of the
clusters at each level, but they do not have any
neighboring cluster points within a given threshold.
In the first case, the random points can be collected
into a set, and later saved into a new ClusterTree.
Thus, we only consider the second case because they
affect the original ClusterTree.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

ce 66 cac «CC 3 cac «CC S mc @ ¢ <
c Cc cccc ccé‘t ¢ Cc {Cccf‘émcccgc ¢ Cc ccccé:‘@xcccﬁcc
foie © & foige. © & foie © i
[[[
C 9 [§ o
\ . oo i
&0 T g 5 Rt cge s,
c ¢ Yo c¢.C e Cc| am@ o
cc gc e o Outllers c < c e o0 new CIUSter g C C%c 00 00%8
cCefE Cc |0 ok Cc o e c‘% C 0 o o
“cE ¢ & 0 /' c€c & 000 cEc (&ife ccg%o
(‘éc@ L£C o Soek c 00° Cr‘éc%ﬁ o0
ccbe&Eee ; cobeEEee ccbcCEee

Fig. 9. (a) Clusters with random points. (b) A new cluster generated from random points. (c) The merge of the clusters.

To minimize the impact of insertions on the index
structure, we design different strategies for each type of
new data points. A query of the new data point on the tree
can collect the neighbor information of the data point and
classify it into one of the three categories. Thus, we can
know what type of data points it is. The cluster points will
be directly inserted into the leaf node. The close-by points
will be inserted into the leaf node which contains its
nearest-neighbors. The radius and the centroid of the leaf
node then needs to be adjusted. If a new data point does not
have any neighboring point within a given threshold, it will
be classified as a random point. A single random point may
be treated as noise and ignored. But when the random
points accumulate, they might form some pattern of a new
cluster, or they might cause the merge of some clusters.
Thus, they may change the distribution pattern of the data
set and outdate the original index structure. This will
seriously affect the benefit of the clustered index structure
and lead to the reorganization of the clusters. Fig. 9 shows
how a newly generated cluster will gradually merge with
an existing cluster after more insertions have been made.

The insertions of the random points are extremely hard
because of the following reasons: 1) the insertion order of
the random points can be arbitrary, and the cluster
algorithm cannot predict where the insertions will be and
2) the lack of knowledge on what comes next may lead to a
wrong decision. If the ClusterTree inserts the random
points as soon as they come, the nodes will be expanded
randomly, which makes the cluster representation ineffi-
cient and inaccurate.

We design a delayed insertion approach, which stores a
single random point without changing the radius and
centroid of any node in the ClusterTree and reorganizes the
newly inserted data points when the amount of random
points reaches a certain threshold. This reorganization can
be time consuming when many nodes and data points are
involved, which happens when the whole ClusterTree
needs to be reorganized. The reorganization first starts
with the nodes involved at the lower level (close to the
leaves) and propagates to the upper levels (close to the root)
of the ClusterTree until the tree is well organized.

5.1 Insertion of Random Points

Here is how a random point is inserted into the index
structure. Starting from the root, if an entry of a node
contains the data point, the corresponding child of that
node will be checked to see whether its children’s bounding
spheres still contain the random point. If so, the child’s
children will be again checked recursively until the random

point cannot go down the ClusterTree. Due to the over-
lapping between bounding spheres, one random point
might end up in several bounding spheres. The most-
related bounding sphere would be selected, based on the
cluster information. We define the maximum inclusion depth
of a point o0 in a ClusterTree as:

Definition 3. Let o be a point and T be a ClusterTree. We define
the maximum inclusion depth of o in T' as the level of the node
V whose bounding sphere contains o, such that for any other
node V' in T, if its bounding sphere also contains o, then
levely: < levely. We denote the maximum inclusion depth of
0 as L.

If no bounding sphere S in ClusterTree T" contains o, then
we define L, = —1. We will collect these types of data
points for creating another ClusterTree.

Each node in the ClusterTree has a random data space to
store the newly inserted random points. If the random data
space is full, a new disk block will be allocated and linked to
the random data space. A random point o will be stored in
the random data space of the node whose level is L,. For
example, in Fig. 10, the bounding spheres of clusters B and
C both include p, and the subclusters B3 and B4 of B also
include p. But, none of the subclusters of C includes p. Here,
L, =2. Thus, B3 is selected, and p will be stored in the
random data space of the node which includes 53.

5.2 Reorganizing Subtrees

When many random data points are inserted into the
ClusterTree and the amount of random data points reach a
threshold, the ClusterTree needs to be reorganized. The
threshold for node; is defined as:

Number of Random Points in node;
=

Number of Random Points+Number of Cluster T’o\nh in node;

We call 7 the reorganizing fraction parameter. The selection of
7 defines the dynamic property of the ClusterTree. If 7 is
small, the ClusterTree will be updated in response to the
insertion of a small number of random data points. Let % be
the number of subclusters for each node, then based on
experiments, we observe that when the percentage of the
random points reaches } x 100% of all of the cluster data
points belonging to the current internal node, the original %
subclusters of the node may not effectively represent the
data points in this node. Thus, we set 7 = % x 100% as the
threshold to reorganize the current node.

The reorganization of an internal node is also based on the
k-medoid method. Both the cluster and random data points in
the node are treated as a subcluster and the k-medoid method

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 11

Fig. 10. The selection of the most relevant (sub) clusters.

will be applied to split the subcluster recursively until a new
subtree is established. When the new subtree is built, the
height of the ClusterTree may increase. We design a force
reinsertion to keep the ClusterTree balanced. Fig. 11 shows the
procedure of the force reinsertion. When the height of the
newly reorganized subtree is increased, it will move up the
siblings of its original parents. The child node with the
smallest number of data points is removed from the children
list of node A, and its data points are reinserted back to A.
When 7 for A is reached, it should also be reorganized, and
optimization will be propagated to the upper levels until the
ClusterTree does not have any nodes where the threshold 7
has been reached.

The process on the leaf nodes will be slightly different
from the process on the internal nodes. When a disk block
cannot store all of the data points belonging to leaf node L,
a 2-medoid splitting method will be applied on the leaf
node. The two sibling leaf nodes L; and L, are generated
from this splitting. If L’s parent node is not full, L; and L,
will be inserted into the parent node. Otherwise, we apply
the similar technique on the parent node, as described in the
beginning of Section 5.2.

Our approach is not sensitive to the insertion order of the
new data points, and can accommodate a large number of
new data points and new clusters. By inserting the new data
points into the fairly close node, the index structure can
coarsely partition the new data points, which greatly
benefits the (re)clustering on the new data points later on.
When a query checks a node V' with random points, all of its
children need to be searched first. If the search range
Sphere(q,d,) is included in one of V’s children, we can
prune the random points because none of the random
points will be a candidate. Otherwise, we need to linearly
search the random points to determine whether they can be
candidates.

6 EXPERIMENTS

We have conducted comprehensive experiments to evaluate
the performance of the ClusterTree. We also compared the
ClusterTree with three other index strategies: DBIN [4], the

Fig. 11. (a) Before force reinsertions. (b) After force reinsertions.

Pyramid-Tree [5] and SR-Tree [17]. Our experiments were
performed on a Sun ULTRA 60 with 512 Megabytes
memory. The experimental results presented below demon-
strate the originality of the ClusterTree.

6.1 Data Sets for Experiments

Synthetic data set. We first designed our own synthetic data
set generator for performing experiments. The data generator
allows control over the structure and the size of the data sets.
The user can specify the number of data points, number of
clusters, number of dimensions, number of points in each
cluster, range of values for each attribute, and the underlying
probability distribution of the data points in each cluster. The
generator also allows the user to specify the number of noise
data points. The noise data points are distributed according to
a random distribution across the data space. The clusters are
either hyperrectangles (a uniform distribution) or spheres
(following d-dimensional and independent normal
distributions). The density of clusters is much higher than
the average density of the space around the cluster. The
generation of hyperrectangle clusters follows closely the
method described in [32]. For the spherically shaped clusters,
the user has the flexibility to choose the variance in each
dimension. Due to the properties of normal distributions, the
maximum distance between a point in the cluster and the
center is unbounded. So, a data point that belongs to cluster A
may be very close to some data points in another cluster B. By
creating overlaps among the clusters, we increase the
distribution complexity of the synthetic data sets.

We generated 20 different synthetic data sets to evaluate
different aspects of our approach. The data sets have sizes
ranging from 100,000 to 1,000,000 data points with five to 50
dimensions each. We added some random data points
(noise) to the data sets that total about 10 percent of the data

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

TABLE 1
Test Data Sets Used in the Experiments

Dataset | Number of | Number of | Number of | Number of Comments
Dimensions | Data Points Outliers Clusters
1 12 100,000 10,000 9 5 hypercube and 4 spherical clusters
2 12 200,000 20,000 9 5 hypercube and 4 spherical clusters
3 12 300,000 30,000 9 5 hypercube and 4 spherical clusters
4 12 400,000 40,000 9 5 hypercube and 4 spherical clusters
5 12 500,000 50,000 9 5 hypercube and 4 spherical clusters
6 12 600,000 60,000 9 5 hypercube and 4 spherical clusters
7 12 700,000 70,000 9 5 hypercube and 4 spherical clusters
8 12 800,000 80,000 9 5 hypercube and 4 spherical clusters
9 12 900,000 90,000 9 5 hypercube and 4 spherical clusters
10 12 1000,000 100,000 9 5 hypercube and 4 spherical clusters
11 5 100,000 10,000 9 5 hypercube and 4 spherical clusters
12 10 100,000 10,000 9 5 hypercube and 4 spherical clusters
20 50 100,000 10,000 9 5 hypercube and 4 spherical clusters

points. Table 1 summarizes the information about the data
sets used in our experiments.

Real data set. We also conducted our experiments on the
GIS data sets generated from the forest-coverage data set [2],
which consists of 581K records. Each data record is a 54-
dimensional data point, which includes elevation, aspect,
slope, etc. The data set was divided into seven clusters by the
US Forest Services. We created the data sets with varying
dimensions and numbers of data points by projecting and
selecting data points from the forest coverage data set. The
sizes of the created data sets are 50,000, 100,000, 150,000, ...,
550,000, and 581,000. The dimensions are 5, 10, ..., 50, and 54.

6.2 Building the ClusterTree

We measured the performance of constructing the Cluster-
Tree and the SR-Tree for the real data sets under the same
conditions. Figs. 12a and 13a show the scalability as the size
of the data sets increases from 10,000 to 581,012 data points.
The average time complexity of constructing a ClusterTree
is O(k- N -log, N). When k = 10 and N < 600,000, the time
complexity degrades to be a linear function. As shown in
Fig. 12a, the running time scales linearly with the size of the

Performance on the datasets with different sizes
35000

30000 | —#-SR-Tree /\\

25000 +—— —A—ClusterTree

20000
15000
10000

0

0 100000 200000 300000 400000 600000
Number of Data Points

Time for CPU and Disk /O (seconds)

500000

(a)

data sets. We follow the suggestion of the SR-Tree and
Pyramid Tree, the maximum disk block size is set to 4,096
bytes. The size of an entry in an internal node is 4 x d + 20,
where d is the number of dimensions. An example of 50
dimensions leads to an effective capacity of 18.6 entries per
page for internal nodes, and capacity of 20.48 data points
per page for leaf nodes. When the dimensions become
smaller, k becomes bigger. This increases the time complex-
ity for constructing a ClusterTree, generating lot of trivial
subclusters. Therefore, when dimension is smaller than 25,
we use 2,048 as block size. When dimension is smaller than
10, we choose 1,024 as block size.

Fig. 12a also shows the comparison between the
ClusterTree and the SR-Tree, and the speed-up factor of
the ClusterTree over the SR-Tree with respect to the CPU
and disk I/O time ranges between 2.5 and 8.1. We can also
see the increasing scale of building the ClusterTree is much
smaller than that of SR-Tree. The reason is that the
ClusterTree only needs to calculate the bounding sphere,
while the SR-Tree must calculate the minimum bounding
hyperrectangles and spheres.

Performance the sets of different dimensions

//\/

PN

~—

30000

——SR-Tree
25000

~#-ClusterTree

20000

15000

10000

5000

Time for CPU and disk I/O (seconds)

P ————

5 10 15 20 25 30 35 40 45 50 55
Dimensions

0

(b)

Fig. 12. Performance of constructing the ClusterTree and SR-Tree for different data sizes and dimensions. (a) 40-dimensional data sets. (b) 500,000

data points under different dimensions.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 13

Constructing ClusterTree for the data sets with different sizes

4000

Time for CPU and disk I/O (seconds)
X
8

500 -

300000 400000 500000

200000

o
0 100000 600000

Number of Points

(a)

ClusterTree for the data sets with different dimensions

5000

——10,000 |
——50,000 |
--0--100,000'
—%=-150,000'
—#—200,000
~ - 250,000
——300,000
--6-- 350,000

400,000
—o—450,000
- ©-500,000'
—+—550,000'
- %--581,012!

s
a
3
s

8 3
g 8
8 8

3000

2000

e
1500

Time for CPU and disk I/O (seconds)
2 2
8 8

a
8
S

o

Dimensions

(b)

Fig. 13. Performance of constructing the ClusterTree for different data sizes and dimensions.

Fig. 12b shows the scalability as the dimensions of the
data sets increase from five to 54. The data sets in Fig. 12b
each have 500,000 data points. The ClusterTree exhibits
linear behavior with respect to dimensions. Fig. 12b also
shows the comparison between the ClusterTree and the SR-
Tree with different dimensionalities, and the speed-up
factor with respect to the CPU and disk I/O time ranges
between four and 18. The construction time of the SR-Tree is
highly affected by dimensions, while the ClusterTree is not
impacted by dimensions at all. The linear increment comes
from the distance computation for increasing dimensions.
Fig. 13 gives the overall construction time of the ClusterTree
under different dimensions and data set sizes. Each curve in
Fig. 13a represents the CPU and disk I/O time of building a
ClusterTree for 13 data sets with different sizes and the
same number of dimensions D, labeled by the number of
dimensions D. Each curve in Fig. 13b represents the CPU
and disk I/O time of building a ClusterTree for 11 data sets
with different dimensions and the same data set size,
labeled by the data set size. They both show that the
construction time is linear with respect to the dimensions
and the data set size.

6.3 Performance on Insertion

We randomly generated up to 1000 data points and inserted
them into the ClusterTree and SR-Tree. These data points
include cluster points, close-by points, and random points.
Figs. 14a and 15a show the average CPU and disk access

—+—ClusterTree

o
o
8

[-=-SR-Tree ‘

L
o
£

=
°
2

./'//
M

0 - - - -
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Data Set Size

CPU+Disk I/O time(seconds)

°
o
S

(a)

time for inserting a new data point into the two index
structures with different sizes and dimensionalities. The
synthetic data sets were used in this experiment. The
ClusterTree is faster in insertion because the centroid-based
algorithm in the ClusterTree only calculates the distance
between the new data points and the centroid. Fig. 14b
shows that the total number of nodes accessed is linear to
the number of data points when random data points are
inserted into the ClusterTree. Fig. 14 also shows that
inserting a new data point into the ClusterTree costs no
more than 0.02 seconds with 40 node accesses. The dynamic
insertion into a ClusterTree does not have a significant
impact on the whole index structure. It does not slow down
the on-line response time for queries. Fig. 15b shows that
the number of node accessed for inserting data points
increases slightly as the dimensions increase because the
number of nodes in the ClusterTree is mainly determined
by the size of the data set, not by the dimensions. This leads
to no significant increase in CPU and disk I/O time as
shown in Fig. 15a. When the same data point is inserted into
the two index structures, the number of nodes accessed in
the ClusterTree is very close to that of the SR-Tree. But the
ClusterTree is faster than the SR-Tree. This is because the
ClusterTree has smaller nodes than the SR-Tree, and it takes
much less time for the ClusterTree to process a node.

o
3

1 —+=ClusterTree /r/

[| —=SR-Tree

a
&

o
&

IS
&

IS
&

@
8

Number of Nodes Accessed
N @
& 8

N
S

15

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Data Set Size

(b)

Fig. 14. Insertion cost of ClusterTrees and SR-Trees of data sets with different sizes.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

14

——Cl uslerTree‘

-=-SR-Tree ‘

o
>3
53

&
=3
3

S

M

— ., e,

o=
S
g

CPU+Disk /0 time(seconds)
S
5]

o

5 ——ClusterTree
o = SR-Tree

10 15 20 25 30 35 40 45 50

o

Dimension of Data Sets

(a)

Dimension of Data Sets

(b)

Fig. 15. Insertion cost of ClusterTrees and SR-Trees of data sets with different dimensions.

6.4 Performance on Query

We will now evaluate the performance of the nearest-
neighbor search on the ClusterTree. We will not show
experiments for range queries because the nearest-neighbor
search is essentially a range query with a consistently
changing search scope. The effectiveness and efficiency of
the nearest-neighbor search is determined by the index
structure and search algorithms, which can be measured by
the following parameters:

e Accuracy of the retrieval results.

e Retrieval percentage: the percentage of data points
searched to obtain the nearest-neighbors versus all
of the data points in a data set.

e Speed-up factors of CPU time and the time spent on
disk I/O when the ClusterTree is compared with the
related approaches.

e The number of nodes (internal nodes and leaves)
accessed in the process of searching the nearest-
neighbors.

The size and dimensions of the data sets as well as the
number of nearest-neighbors required will affect the values
of the above parameters. We aim to demonstrate the power
of the ClusterTree for the nearest-neighbor search by
comparing with the other existing index structures (SR-
Tree, Pyramid-Tree). We will also show the efficiency of the
proposed nearest-neighbor search algorithms for the Clus-
terTree by comparing our results with the results of an
optimal search which can achieve the best performance.
Such an optimal search is described as follows.

Given a query of a p-nearest-neighbor search, the pth
nearest distance to the query is calculated in advance, then
this p-nearest-neighbor search can be transformed into a
range query which uses the pth distance as the search range.

TABLE 2
Accuracy and Fraction Searched for 12-Dimensional
Data Set with 1,000,000 Data Points

Obviously this range query can guarantee the best
performance for the p-nearest-neighbor search. We call this
range query algorithm an optimal search algorithm (OPT).
The selection of a query point affects the performance
evaluation. If a data point’s nearest-neighbors are within a
few nodes, the query performance will be much better than
a data point whose nearest-neighbors are randomly dis-
tributed in many data nodes. We picked 50 Cluster points,
50 Close-by point, and 50 Random data points. Half of the
50 Cluster points are picked randomly from the data set
itself, the other half of the cluster points are randomly
generated based on the scope of the leaf nodes. The size of
the evaluation set also affects the average performance if it
is small. When the size of the evaluation set is more than
100, the average performance does not change significantly.
Therefore, both selection of the evaluation set and its size
are important to show the average performance of queries
accurately. The same query set is applied to the other two
index structures.

6.4.1 Accuracy of Retrieval and Fraction of Data
Searched

Our approach can accurately perform the p-nearest-neigh-
bor search. For a given query, it only searches within the
most related clusters for the nearest-neighbors. Tables 2
and 3 show the comparison between our approach and
DBIN. From the tables, the ClusterTree achieved 100 percent
accuracy on searching the nearest-neighbors. DBIN is based
on a probabilistic approach, and also achieves very high
accuracy. The fraction of data points that are searched in
our approach is much lower than that of DBIN because the
ClusterTree decomposes a cluster into several subclusters.
Instead of searching the entire cluster, it searches the related
subclusters. DBIN only performs queries at the cluster level.

TABLE 3
Accuracy and Fraction Searched for 30-Dimensional
Real Data Set with 100,000 Data Points

Number Of nearest neighbors Number Of nearest neighbors
2] 5] 0] 50 2 | 5] 10] 30
Accuracy | 99.0% | 100% | 100% | 97.1% Accuracy | 94.7% | 90.0% | 85.0% | 78.6%
DBIN Fraction | 12.5% | 13.9% | 14.2% | 16.6% DBIN Fraction | 16.8% | 17.2% | 17.4% | 17.8%
Accuracy | 100.0% | 100% | 100% | 100% Accuracy | 100.0% | 100% | 100% | 100%
ClusterTree | Fraction 2.58% | 3.53% | 4.2% | 5.19% ClusterTree | Fraction 3.58% | 5.024% | 6.10% | 9.04%

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 15

20.00%

—-SR-Tree |
-=-MDS
—ADS
—<0DS
=O0PT [|

17.50%

15.00%

9
12.50% F:

10.00% \

7.50%

5.00%

Percentage of Data Points Accessed

2.50%

0.00%
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

Dataset Size (p=5)

(a)

25.00%

20.00%

15.00% I

10.00%

——SR-Tree
—a—MDS
—4&—ADS
——0DS
- - .0PT

Percentage of Data Points Accessed

5.00%

0 10 20 30 40 50 60 70 80 90 100

Number of Nearest Neighbors (Dataset Size = 100,000)

(c)

20.00% \
17.50% \ —=—MDS ™
4—ADS
—¢—0DS
15.00% i

- £+ :OPT
» \
12.50% N

10.00%

—&—SR-Tree

Percentage of Data Points Accessed

7.50%

5.00% T T T T
100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Dataset Size (p=100)

(b)

10.00%

9.00%

8.00%

7.00%

6.00%

5.00%

£.00% L4 ——SR-Tree| |

—=—MDS

—4—ADS

—0DS
2.00% |
¢ - o= -OPT

Percentage of Data Points Accessed

3.00% F

1.00%

0 10 20 30 40 50 60 70 80 90 100

of Nearest

igl s (Dataset Size = 1000,000)

(d)

Fig. 16. Retrieval percentage of ClusterTrees and SR-Tree using data sets with the same dimensions.

Fig. 16 shows the detailed comparison between the
ClusterTree and SR-Tree on 10-dimensional data sets with
different sizes. The synthetic data sets used are
Data Sets 1, 2, ..., 10. Figs. 16a and 16b show the five and
100-nearest-neighbor searches where the size of the data sets
goes from 100,000 to 1,000,000. The retrieval percentage for
the 5-nearest-neighbor search decreases from 12.5 percent to
3 percent, and the retrieval percentage for the 100-nearest-
neighbor search decreases from 13 percent to 6 percent.
When the size of the data sets is small, the cluster is very
sparse, and the search range might check most of the points.
As the size of the data set increases, the clusters become
more dense, and the neighboring data points are clustered
into the same cluster or subcluster. Therefore, the search
region can be reduced. For small data sets, we can afford to
search a large part of the data set, and the response time will
still be very low. But for a large data set, the retrieval
percentage is crucial to the performance. The experiments
show that the retrieval percentage decreases as the size of
the data sets becomes larger. This can reduce the cost of the
CPU time and disk accesses. Fig. 16a shows that ODS has a
uniformly lower retrieval percentage than MDS, ADS, and
the SR-Tree. The SR-Tree has a relatively high retrieval
percentage when the size is 100,000, but its retrieval
percentage decreases very fast, and it outperforms MDS
and ADS slightly when the size is 200,000 ~ 400,000. MDS
and ADS perform better than the SR-Tree when the size of
the data sets is bigger than 400,000. The experiments
demonstrate that ODS is superior to MDS and ADS.
Fig. 16b shows these three search algorithms have better

performance than the SR-Tree. Fig. 16¢ shows the retrieval
percentage for the p-nearest-neighbor search in a data set
with 100,000 points, where p =1,2,...100. The retrieval
percentages for these four search strategies are very close.
Fig. 16d shows the results for a data set with 1,000,000
points. The ClusterTree outperforms the SR-Tree for any
given value p in both data sets.

Fig. 17 shows the performance for the nearest-neighbor
search in the GIS forest coverage data sets, where the number
of dimensions of these data sets is 10. Each curve in Fig. 17a
shows the retrieval percentage of the data sets with different
number of queries and a fixed data set size, and each curveis
labeled by this data set size. When the data setis small, such as
50,000 data points, the retrieval percentage is close to
20 percent. When the data set is large, the retrieval percentage
is only about 5 percent. The data sets with 550,000 data points
have the lowestretrieval percentage. Fig. 17 also shows thatas
the size of the data sets increases, the retrieval percentage
decreases. Fig. 17b gives an example of 100-NN nearest-
neighbor search in 10-dimensional data sets with 50,000 ~
550, 000 data points. The retrieval percentage is 17 percent for
the data set with 50,000 data points, and decreases to 6 percent
when the size of the data set is 550,000.

Fig. 18a shows the retrieval percentage of the 5-nearest-
neighbor search when the dimension is 5, 10, ... 50 and the
size of the data sets is 100,000. Data sets 11, 12, ..., 20 used in
this experiment are synthetic. The SR-Tree has a retrieval
percentage of 2 percent when the dimension is 5, it reaches
a percentage of 50 percent when the dimension is 40, while
the ClusterTree keeps the retrieval percentage lower than 20

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

Retrieval percentage for 1~100 NN search in 10-dimensional data sets
20%
18%
16%
14%
12%
10%

8%
6%
4%
2%
0%

| —+—50,000
| -2 100,000
- %=-150,000
e BT e 200,000
~--:250,000 |
——300,000 |
-6+ 350,000

400,000 |

Percentagee

| ——450,000
| -a-+500,000
| —+— 550,000

(a)

10.00% \\
m'

Percentage of Data Accessed
g

0.00%
50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 550,000

(b)

Fig. 17. Retrieval percentage of ClusterTrees for different data sizes and dimensions. (a) Number of queries. (b) Number of data points.

percent. The MDS performs slight better than ADS, and
ODS achieves the best performance among these three
search methods. ODS almost reaches the performance of the
optimal search algorithm (OPT).

Fig. 18b shows the retrieval percentage of the p-nearest-
neighbor search in a 5-dimensional data set with
p=1,2,...100. Table 4 lists the retrieval percentages for
the data sets with dimensions of 10 and 40. When the data
set is 5-dimensional, ADS performs better than MDS
(shown in Fig. 18b), but MDS shows better performance
when the data set is 10-dimensional (shown in Table 4). In
both data sets, ODS has a lower retrieval percentage than
MDS and ADS. As discussed in Section 4.2.2, both d,,,;,, and
dy do not take the data distribution into consideration.
Therefore, for different data distributions, neither of them
can achieve better performance under all circumstances.
ODS takes advantage of the data distribution, therefore, it
achieves better performance than ADS and MDS. ODS has
almost the same performance as OPT, as shown in Fig. 18
and Table 4. As Table 4 shows, when the data set is
40 dimensional, the SR-Tree searches half of the data set to
get the nearest-neighbors. This result derives from the
distribution of the distances between the data points within
the data set. In [17], [7], it was shown that the minimum
distance between any two data points grows drastically as
dimensions increase, and the ratio between the minimum
distance and maximum distance is more than 60 percent
when the number of dimensions is 40. That is, the variation

50.0%

——SR-Tree

—=—MDS

IS
S
S
=

[—a—nps
—%—0Ds

|| - &= opT

30.0%

20.0%

10.0%

Percentage of Data Points Accessed

5 10 15 20 25 30 35 40 45 50

Number of dimensions

(a)

of distance decreases as the dimensions increase. This also
leads to the result that the ratio between d,,;, and d,, is
close to 1. Therefore, MDS, ADS, ODS and OPT have
similar performance when the dimension is 40, as shown in
Table 4. With the introduction of clusters and subclusters,
the retrieval percentage of the ClusterTree is 30 percent
lower than that of the SR-Tree.

6.4.2 CPU and Disk I/0O Time

Performance of nearest-neighbor search on various data
set sizes. In this experiment, we measure the performance
behavior with the synthetic data sets of the different sizes in
term of CPU time and the time spent on disk I/O. The 10-
dimensional synthetic data sets used are data sets 1, 2, ..., 10.
Their sizes range from 100,000 to 1,000,000. Previous
experiments show that ODS has better performance than
ADS and MDS. In this experiment, we only show the results
of ODS for the ClusterTree. Fig. 19 shows the total time
elapsed when the 5-NN, 30-NN and 100-NN are searched in
the data set with varying sizes. As the size of a data set
increases, the number of the nodes in the ClusterTree also
increases. A search algorithm needs to access more nodes to
obtain the nearest-neighbors, which slightly increases the
CPU and disk I/O time spent on the search. As shown in
Fig. 19, the increment of the total time is very small when
the ClusterTree is compared with the SR-Tree and Pyramid-
Tree, also the ClusterTree spends less time than the SR-Tree
and Pyramid-Tree to perform a nearest-neighbor search.

5.00%

——SR-Tree
—=—MDS

aanE ///J
4.00% o6

7 - ﬂ%//
3.00% /

2.00%

of Data Points A

1.00% -+t T g T T T
0 10 20 30 40 50 60 70 80 90 100

Number of Nearest Neighbors

(b)

Fig. 18. Retrieval percentage of ClusterTree and SR-Tree for different p values.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 17

TABLE 4
Retrival Percentage of ClutsterTree and SR-Tree for Different p Values

Dimension = 10 Dimension =40
Value of p | SR-Tree | MDS | ADS | ODS | OPT SR-Tree | MDS | ADS | ODS | OPT
2 16.10% | 10.61% | 10.35% | 10.20% | 10.18% 48.40% | 17.60% | 19.08% | 17.59% | 17.59%
5 17.00% | 11.61% | 11.48% | 11.30% | 11.27% 48.40% | 18.25% | 19.24% | 18.25% | 18.25%
10 18.00% | 12.10% | 12.10% | 11.87% | 11.84% 48.50% | 18.27% | 19.26% | 18.26% | 18.26%
15 18.50% | 12.36% | 12.42% | 12.15% | 12.13% 48.50% | 18.77% | 19.27% | 18.77% | 18.77%
20 18.80% | 12.52% | 12.60% | 12.34% | 12.32% 48.50% | 18.86% | 19.28% | 18.86% | 18.86%
25 19.00% | 12.64% | 12.74% | 12.45% | 12.42% 48.50% | 19.25% | 19.28% | 19.25% | 19.25%
30 19.20% | 12.74% | 12.86% | 12.57% | 12.54% 48.60% | 19.27% | 19.29% | 19.27% | 19.27%
35 19.30% | 12.83% | 12.98% | 12.68% | 12.64% 48.60% | 19.28% | 19.29% | 19.28% | 19.28%
40 19.50% | 12.90% | 13.09% | 12.76% | 12.74% 48.60% | 19.29% | 19.29% | 19.29% | 19.29%
45 19.60% | 12.96% | 13.15% | 12.82% | 12.80% 48.60% | 19.29% | 19.29% | 19.29% | 19.29%
50 19.60% | 13.02% | 13.22% | 12.88% | 12.85% 48.60% | 19.29% | 19.29% | 19.29% | 19.29%
60 19.70% | 13.09% | 13.32% | 12.96% | 12.94% 48.60% | 19.30% | 19.30% | 19.30% | 19.29%
70 19.70% | 13.16% | 13.41% | 13.03% | 13.02% 48.60% | 19.30% | 19.30% | 19.30% | 19.30%
80 19.80% | 13.22% | 1347% | 13.10% | 13.07% 48.70% | 19.30% | 19.30% | 19.30% | 19.30%
90 19.80% | 13.26% | 13.52% | 13.14% | 13.12% 48.70% | 19.30% | 19.30% | 19.30% | 19.30%
100 20.00% | 13.30% | 13.57% | 13.18% | 13.16% 48.70% | 19.30% | 19.30% | 19.30% | 19.30%

Based on the experiment results in Fig. 19a, the speed-up
factor of the ClusterTree over the SR-Tree starts at 11.4, and
slowly decreases to 3.8 as the data set increases. The
average speed-up factor is 4.6. The speed-up factor of the
ClusterTree to the Pyramid-Tree starts at 1.6, and slowly
increases to 2.29 as the size of the data sets increases to
1,000,000. Previous experiments show that the ClusterTree
has very low retrieval percentage, therefore, the time spent
on reading the data points into main memory from disk and
checking whether the data points are the nearest-neighbors
is relatively low when compared with SR-Tree.

Table 5 shows the running time of the p nearest-neighbor
search on three data sets with sizes 100,000, 500,000, and
1,000,000, which includes CPU and disk I/O time. All time
values are represented in seconds. When the data set is
100,000, the speed-up factor of the ClusterTree over the SR-
Tree starts at 9.33 for p = 2, and increases to 43.4 for p = 100.

The speed-up factor of the ClusterTree over the Pyramid-
Tree starts at 1.5, and increases to 1.9. This experiment
shows that the ClusterTree outperforms the competitive
structures (SR-Tree and Pyramid Tree) for very small
queries as well as large queries. For a large query, the
ClusterTree performs even better.

Performance of nearest-neighbor search on different
dimensions. In this experiment, we tested the effect of Curse
of Dimensionality on the performance of the index structures.

The synthetic data sets used here have 5, 10, ..., and 50
dimensions. Figs. 20a and 20b show the results of the 5-NN
and 100-NN for all of the dimensions. Fig. 20b only figshows
part of the result for the SR-Tree. As shown in this figure, the
running time of the ClusterTree on a query scales linearly
with the dimensions of the data sets. The scale is lower than
both SR-Tree and Pyramid-Tree. We observed in Fig. 20a that
the speed-up factor of the ClusterTree over the SR-Tree starts
at 2.62, and reaches its highest value of 22.03 when the
dimension is 40 and p = 5. Fig. 20b shows that the speed-up
factor of the ClusterTree over the SR-Tree starts at 8.16, and
reaches its highest value of 87.20 when the dimension is 40
and p = 100. The speed-up factor of the ClusterTree over the
Pyramid-Tree ranges between 1.2 and 3.1, and it scales up as
the dimensions increase. Thatis, the ClusterTreeis even faster
than the others when the dimensions go higher. The
performance curves for the SR-Tree and Pyramid-Tree are
not monotonic because the query points are randomly picked
and their neighboring information related to the data set can
significantly impact the query efficiency. In contrast, the
response time of the ClusterTree monotonically increases
because the percentage of the data points searched increases
with dimensions, as shown in Fig. 18a.

Fig. 20c shows the total elapsed time of the three index
structures when the number of dimensions is five. We
observed that the response time of the SR-Tree linearly

w
o
~

—~-SR-Tree ~+-SR-Tree

@
I
>
[

~#-Pyramid-Tree /\/

-#-Pyramid-Tree

N
o
o

N
IS

[| -+ClusterTree-0Ds /\/

=4~ ClusterTree-ODS /\/

o
©

— i . L

CPU+Disk /O time (sec)

CPU+Disk /O time (sec)

e i I N el
%

o
o

18
16 17— —-SR-Tree //“‘

'g 14 +— = Pyramid-T /

@ 12 || ClusterTree-ODS

E

S 404

o

=

x 8

] /

Q6

2 el

S 44—
2 P ————
0

0
100000 200000 300000 400000 500000 600OOO 700000 800000 S00000 1000C00
Dataset Size (p = 5)

o
100000 200000 300000 400000 500000 600000 700000 BOOODO 900000 1000000
Dataset Size (p = 30)

00000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Dataset Size (p = 100)

Fig. 19. Performance of SR-Tree, ClusterTree, and Pyramid-Tree on different data set sizes.

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

TABLE 5
CPU + Disk I/0 Time of ClusterTree, Pyramid-Tree, and SR-Tree for the p-Nearest-Neighbor Search

Dataset size = 100,000 Dataset size = 500,000 Dataset size = 1000,000
Value of p || SR-Tree | Pyramid [ClusterTree || SR-Tree | Pyramid | ClusterTree || SR-Tree | Pyramid | ClusterTree
2 0.784 0.129 0.084 1.95 0.764 0.4865 2.52 1.83 0.7405
5 0.957 0.134 0.0835 2.35 0.772 0.5095 3.16 1.889 0.8215
10 1.111 0.135 0.0875 2.8 0.783 0.5355 3.8 1.924 0.874
15 1.252 0.141 0.0865 3.1 0.791 0.5335 4.36 1.944 0.888
20 1.384 0.144 0.0855 3.45 0.802 0.547 4.88 1.976 0.9035
25 1.512 0.145 0.0845 3.8 0.82 0.5435 5.44 1.967 0912
30 1.643 0.146 0.0865 4.15 0.823 0.5425 5.96 1.956 0.9235
35 1.781 0.148 0.087 4.55 0.834 0.5445 6.48 1.963 0.9335
40 1.95 0.149 0.0845 49 0.836 0.543 7.08 1.959 0.9205
45 2.1 0.15 0.087 53 0.838 0.5475 7.6 1.962 0.937
50 2.25 0.172 0.0865 5.75 0.962 0.5515 8.24 2.233 0.9485
60 2.6 0.157 0.085 6.6 0.861 0.5495 9.48 1.993 0.959
70 2.9 0.159 0.0875 7.55 0.861 0.5555 10.84 1.991 0.9715
80 33 0.162 0.09 8.65 0.869 0.5575 12.36 1.999 0.92
90 3.75 0.165 0.0885 99 0.869 0.563 13.96 2.024 0.9685
100 4.15 0.17 0.0895 11.05 0.879 0.5625 15.72 2.017 0.9735

increases with the query size, while the time of the
ClusterTree increases only slightly. Fig. 20d shows the total
elapsed time of the ClusterTree and the Pyramid-Tree when
the number of dimensions is 50, and we can see that the
speed-up factor here is close to 3. It also shows that the time
does not increase even when the size of the query increases.
As discussed in [8], the effect of high dimensions is to
extend query regions. We can define a unit data cube

——SR-Tree

—#-Pyramid-Tree

—&—ClusterTree

CPU+Disk I/O time (sec)
N

& —h

5 10 15 20 25 30 35 40 45 50
Dimension (p = 5)

(a)

o
™

——SR-Tree Y

o
e

—#- Pyramid-Tree

o
o

—&—ClusterTree

o
o

CPU+Disk I/O time (sec)
o o
w =

o

N

10 20 30 40 50 60 70 80 90 100
Number of the Nearesr Neighbors (Dimension = 5)

o

(c)

R[0.0...1.0)” as: 1) D is the number of dimensions with
D > 20 and 2) each component of the data points ranges
from 0.0 to 1.0. For any data set in this cube, the distance
between the query point and its nearest-neighbor (p =1)
reaches a value of 0.5, i.e. the nearest-neighbor sphere has
the same diameter as the complete data space. This means
that the value of p has a minor influence on the search
scope. Therefore, the total time does not change signifi-

——SR-Tree

—#-Pyramid-Tree

—&—ClusterTree

CPU+Disk I/0 time (sec)

5 10 15 20 25 30 35 40 45 50
Dimension (p = 100)

(b)

0.7

06 1\ TN
\I’I\./. -__H\._——I—I—.——_.

0.5

- Pyramid-Tree
0.4 —

—&—ClusterTree
03 —

0.2 i . =N
0.1

0

CPU+Disk I/O time (sec)

0 10 20 30 40 50 60 70 80 90 100
Number of the Nearest Neighbors (dimension = 50)

(d)

Fig. 20. Performance of SR-Tree, ClusterTree, and Pyramid-Tree on different dimensions.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 19

0.6 l
—o—Pyramid-Tree ‘ /L]
‘%T 05 —+SR-Tree
5 —— ClusterTree /
o
i 0.4
@
£ s
=
o e
= 0
2o -
T 1
= o
o
O 0.1 —
i ————4-
0
0 10 20 30 40 50 60 70 80 20 100
ber of N Neighbors (d =10)
(a)

0.8

07 —o—Pyramid-Tree
8 —-SR-Tree /
g 08 ——Cli T
8 usterTree /D\ /\/
L o0s5
o x L)
: [N,
S 04 n; =
o ~o—"~—0—
ﬁ 0.3 A~
2./

0.2
2T
o

0.1 kk—.—‘/

0

200000 300000 400000 500000 600000

Dataset Size (p = 50, d=10)

(c)

(=)

100000

e
bt

—o—Pyramid-Tree /

—-SR-Tree
—&—ClusterTree /

~\5_/-D—D/:’—D\Q/D/D

e
o

o
o

e
~

o
w

CPU+Disk I/O time (seconds)
o
N

o

=)

10 15 20 25 30 35 40 45 50 55

o

Dimensions (p = 20, dataset size =100,000)

(e)

35

——Pyramid-Tree
3 -~SR-Tree
—&— ClusterTree
25

CPU+Disk I/O time (seconds)
¢ ; [\)

0 10 20 30 40 50 60 70 80 920 100
Number of Nearest Neighbors (d = 54)

(b)

~{-SR-Tree

e
} —4—Pyramid-Tree

—&—ClusterTree / 1N

CPU+Disk I/O time (seconds)

0 100000 200000 300000 400000 500000 600000

Dataset Size (p = 100, d=54)

(d)

—o— Pyramid-Tree

w

~{~SR-Tree

25 —&—ClusterTree /

N

CPU+Disk I/O time (seconds)

Dimensions (p = 100, dataset size = 500,000)

0

Fig. 21. Performance of Pyramid-Tree, SR-Tree, and ClusterTree on real data sets.

cantly as shown in Fig. 20d. This experiment shows that the
ClusterTree runs faster than the Pyramid-Tree and SR-Tree
when the dimensions go higher. The major reason is that
the ClusterTree considers the clusters in the query, and
groups the neighboring points within the same (sub)
cluster, then the search region only includes a few nodes
close to the query point. Therefore, it demonstrates the
effectiveness of including data clustering information in the
index structure design.

Performance Evaluation Using Real Data sets. In this
series of experiments, we use the forest coverage data sets
to demonstrate the practical applicability of the ClusterTree.
We also compare it with the Pyramid-Tree and the SR-Tree
over these real data sets. We vary the number of nearest-
neighbors, the size of the data sets and the dimensions, and
measure the total query time (CPU + disk I/O time).

Fig. 21a shows the query time for the p-nearest-neighbor
search when the size of the data set is 50,000 and the

number of dimensions is 10. In this experiment, the
Pyramid-Tree shows better performance than the SR-Tree,
and the ClusterTree shows better performance than the
Pyramid-Tree. Fig. 21b shows the results when the size of
the data set is 500,000 and dimension is 54. Here, the SR-
Tree shows better performance than the Pyramid-Tree. The
real data sets are skewed data. The authors of the Pyramid-
Tree indicated that the Pyramid-Tree could be affect by the
skewness of the data sets. As the number of dimensions
increase, the data sets tend to be more skewed. Therefore,
the Pyramid-Tree is affected by the skewness of the data
sets, and the SR-Tree has better performance than the
Pyramid-Tree.

Figs. 21c and 21d show the query time when we fix p and
the number of dimensions D, and vary the size of the data
sets. Fig. 21c shows the performance when D = 10, where
Fig. 21d shows the performance when D = 54. We observed
that the running time of the Pyramid-Tree does not

20 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

4000

3500

3000

2500

2000

of Nodes A

1500

1000

500

0

100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
Dataset Size (p=100)

3000

2500

i =
2000 =
o
%
1500 f
1000

0 10 20 30 40 50 60 70 80 90 100

Number of Nodes Accessed

Number of the Nearest Neighbors (Dataset size = 500,000)

(b)

(a)

4000

w
53
S
S

©
=3
S
S

N
=1
S
S

Number of Nodes Accessed
&
8

0 10 20 30 40 50 60 70 80 90 100

Number of the Nearest Neighbors (Dataset size = 1000,000)

(c)

Fig. 22. Performance of ClusterTree for the 12-dimensional data sets with with different size.

monotonically increase when the data set size is 550,000.
This is because the Pyramid-Tree ran on a shared computer
and its performance was affected by other processes.
Figs. 21e and 21f show the query time when we fix p and
the size of the data sets, and vary the dimensions D. The
results presented in Fig. 21 confirm the previous results on
the synthetic data sets. The ClusterTree outperforms the
competitive index structures, the SR-Tree and the Pyramid-
Tree, when we vary the data sets’ sizes, dimensions, and
number of query points.

6.4.3 Number of Nodes Accessed

We also conducted experiments to test the number of the
nodes accessed in the nearest-neighbor search when the
query size, the dimensions, and the size of data sets change.
We aim to test the effectiveness of the search algorithms and
compare their performance in term of the number of
accessed nodes for queries. Figs. 22 and 23 show the
performance of the ClusterTree with ADS, MDS, ODS, and
OPT. Fig. 22a shows the number of the nodes accessed
versus the size of the 12-dimensional data sets when
p = 100. The size of the data sets ranges from 100,000 to
1,000,000. Figs. 22b and 22c show the results of a p-nearest-
neighbor search for two data sets with 500,000 and 1,000,000
data points, respectively. ODS has a lower number of
accessed nodes than MDS and ADS, and only accesses a few
more nodes than OPT. The number of accessed nodes in
these four algorithms is not sensitive to the size of the query
or the size of the data sets. The rate of the increase is much

lower than linear function. When the size of the data set
reaches 1,000,000, the number of accessed nodes even
decreases as shown in Fig. 22a. Here, ADS performs better
than MDS. In an index structure with many empty regions
and overlaps, ADS searches among the sibling nodes, which
results in the node having the closest centroid to the query
point being picked first. The centroid of a node represents
the data points within the node, and the query close to the
centroid has a higher probability of obtaining more
neighboring points. In this case, ADS can perform better
than MDS, but this is not always true. In the following
experiments, we will show that MDS sometimes performs
better.

Fig. 23a shows the number of nodes accessed vs. the
dimension for p-nearest-neighbor search where p = 10, and
the size of each data set is 100,000. Fig. 23b shows the result
when p = 100, and the size of each data set is also 100,000.
Fig. 23c shows that the number of accessed nodes increases
slowly as query size increases (the number of dimensions is
25). Fig. 23d shows that the number of accessed nodes does
not significantly increase when the dimension is 50. Figs. 23a
and 23b show that as the dimensions increase, the number
of accessed nodes stays at a very low level. In these figures,
the dimensions range from five to 50. No more than
1,400 nodes will be accessed while the total number of
nodes built for these data sets is more than 10,000.

From Fig. 23, we observe that MDS outperforms ADS in
term of the number of the accessed nodes, and it searches
up to 100 less nodes than ADS. ODS performs better than

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 21

1400

-+ MDS
1200 —
'§ -=ADS P,./:/I
g 1000 || —+ODS —
g < OPT
9 800 s
°
2
Z 600
o
5
8 400
€
2
200
0 2 :
5 10 15 20 25 30 35 40 45 50

Number Of Dimensions (p= 10)

(@)

1100

1050 =

T —
Q
2 E
@ "
$ 1000 J.-"’/ A
<] /
("]
@
B 950 %
z —2
S WW, MDS
——
5 900
£ f - ADS
Z 850 —+0DS
- OPT
800 ; . |
0 10 20 30 40 50 60 70 8 90 100

Number of the Nearest Neighbors (dimension = 25)

(c)
Fig. 23. Performance of SR-Tree on data sets with different dimensions.

MDS and ADS. The superiority of ODS lies in the fact that it
uses a successful combination of MDS and ADS in the
ClusterTree. MDS fails to make a correct selection when the
data points in the node are sparse, and this might result in
extra nodes being searched. ADS fails to make a right
decision when the data points in the node are compact.
Therefore, it might waste time on searching many other
nodes which do not have any of the nearest-neighbors
before it searches the nodes having the nearest-neighbors.

7 CONCLUSION

In this paper, we have presented an indexing approach
(termed ClusterTree) to representing clusters in a hierarch-
ical structure. We have also presented an approach to
dynamically reconstruct the ClusterTree when new data
points are added. By integrating the cluster representation
with the index structure, the ClusterTree enhances the
performance of the nearest-neighbor search because it can
effectively exploit the structure of the data set. The
ClusterTree works well for high-dimensional data sets,
especially in supporting efficient queries. We conducted
comprehensive experiments on both synthetic and real
world data sets. The overall results show that the
ClusterTree outperforms several of the newest index
structures for high-dimensional data sets. The experiments
also demonstrated that the clustering and further subclus-
tering approach could greatly reduce the fraction of data
that need to be searched to find the nearest-neighbors.

1400

1200

1000

800

600

Number of Nodes Accessed

o
o
o

20 25 30 35 40 45 50
Number Of Dimensions (p= 100)

(b)

1175

1170

-

1165

1160

1155

1150

Number of Nodes Accessed

o
|

0 10 20 30 40 50 60 70 80 90
ion= 50)

1145

1140
100

Number of the N t Neighb (di

APPENDIX A

SELECT ALGORITHM

Partitioning Algorithm. Given an array Alp..q], the parti-
tioning algorithm divides the array into two regions: the left
region which includes the first element and the right region
which includes the last element, and puts elements smaller
than Afp] into the left region of the array and elements
larger than A[p] into the right region, where A[p] is the first
element of A.

The following algorithm rearranges the array A[p..r| in
place.

PARTITION(A, p, 7)

(1) z < Alp]

Ri—p-—1

B j—r+1

(4) while TRUE

(5) do repeat j < j — 1 until A[j] <=

(6) repeat i — i+ 1 until Afi] > x
(7) ifi<j

)] then exchange A[i] < A[j]

9) else return j

SELECT is a divide-and-conquer algorithm for the
selection problem. The following code for SELECT returns
the ith smallest element of the array A[p..r].

SELECT(A, p,r,1):
M1 ifp=r
(2) then return A[p]

22 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 15, NO. 3, MAY/JUNE 2003.

(3) ¢ — PARTITION(A, p,r)

@ k—qg—p+1

G ifi<k

(6) then return SELECT(A,p, q,1)

(7) else return SELECT(A,q+ 1,7,i — k)

The worse-case running time for SELECT is ©(n?). The
algorithm works well in the average case when A is a
randomized array. To guarantee the best performance, we
can toss the elements in A to make it random. The average
time complexity of SELECT is O(n) in [11].

ACKNOWLEDGMENTS

The authors would like to thank UCI Repository of
machine learning databases for providing them with the
forest coverage data set. The authors also thank Stefan
Berchtold for posting his source code for the Pyramid-
Tree algorithm. The authors also thank Norio Katayama
for providing them with the most updated version of SR-
Tree source code. Without any of these contributions, it
would have been impossible for them to conduct their
experiments. This research is supported by US National
Science Foundation grants IRI-9733730, EIA-9818289, EIA-
9983430, and IRI-9905603.

REFERENCES

[1] C.C. Aggarwal, C. Procopiuc, J.L. Wolf, P. Yu, and J.S. Park, “Fast
Algorithms for Projected Clustering,” Proc. ACM SIGMOD Conf.
Management of Data, pp. 61-72, 1999.

[2] S.D. Bay The UCI KDD Archive [http://kdd. ics. uci. edu], Univ.
of California, Irvine, Dept. of Information and Computer Science,
1999.

[3] N.Beckmann, H.P.Kriegel, R. Schneider,and B. Seeger, “The R*-tree:
An Efficient and Robust Access Method for Points and Rectangles,”
Proc. ACM-SIGMOD Int’l Conf. Management of Data, pp. 322-331,
May, 1990.

[4] K. Bennett, U. Fayyad, and D. Geiger, “Density-Based Indexing for
Approximate Nearest-Neighbor Queries,” Proc. Fifth Int’l Conf.
KDD, 1999.

[5S] S. Berchtold, C Bohm, and H. Kriegel, “The Pyramid-Technique:
Towards Breaking the Curse of Dimensionality,” Proc. 1998 ACM
SIGMOD Int’l Conf. Management of Data, pp. 142-153, 1998.

[6] S.Berchtold, D.A. Keim, and H.-P. Kriegel, “The X-Tree: An Index
Structure for High-Dimensional Data,” Proc. 22th Int’l Conf. Very
Large Data Bases, VLDB '96, pp. 28-39, 1996.

[71 K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
“Nearest-Neighbor” Meaningful?” Int’l Conf. Database Theory 99,
pp- 217-235, 1999.

[8] C. Bohm, “A Cost Model for Query Processing in High-
Dimensional Data Spaces,” ACM Trans. Database Systems, vol. 25,
no. 2, 2000.

[9] K. Chakrabarti and S. Mehrotra, “The Hybrid Tree: An Index
Structure for High Dimensional Feature Spaces,” Proc. 16th Int’l
Conf. Data Eng., pp. 440-447, Feb. 2000.

[10] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 23rd Very
Large Databases Conf., pp. 426-435, 1997.

[11] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. The MIT Press, 1990.

[12] D.M. Gavrila, “R-Tree Index Optimization,” Advances in GIS
Research, T. Waugh and R. Healey, eds., Tayor and Francis, 1994.

[13] T. Gonzalez, “Clustering to Minimize the Maximum Intercluster
Distance,” Theoretical Computer Science, vol. 38, pp. 311-322, 1985.

[14] S. Guha, R. Rastogi, and K. Shim, “Cure: An Efficient Clustering
Algorithm for Large Databases,” Proc. ACM SIGMOD Conf.
Management of Data, pp. 73-84, 1998.

[15] A. Guttman, “R-Trees: A Dynamic Index for Geometric Data,”
Proc. ACM SIGMOD Int'l Conf. Management of Data, pp. 47-57,
1984.

[16] I. Kamel and C. Faloutsos, “On Packing R-Trees,” Proc. Second Int’]
Conf. Information and Knowledge Management (CIKM-93), pp. 490-
499, Nov. 1993.

[17] N. Katayama and S. Satoh, “The SR-Tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries,” Proc. 1997 ACM
SIGMOD Int’l Conf. Management of Data, pp. 369-380, 1997.

[18] L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[19] R. Kurniawati, J.S. Jin, and J.A. Shepherd, “The SS+-Tree: An
Improved Index Structure for Similarity Searches in a High-
Dimensional Feature Space,” Proc. SPIE Conf. Storage and Retrieval
for Image and Video Databases, pp. 13-24, Feb. 1997.

[20] B.S. Manjunath and W.Y. Ma, “Texture Features for Browsing and
Retrieval of Image Data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 8, pp. 837-842, Aug. 1996.

[21] RT. Ng and J. Han, “Efficient and Effective Clustering Methods
for Spatial Data Mining,” Proc. 20th Very Large Databases Conf., pp.
144-155, 1994.

[22]]J.T. Robinson, “The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes,” Proc. ACM SIGMOD Conf.
Management of Data, pp. 10-18, Apr. 1981.

[23] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD, pp. 71-79, Nov. 1995.

[24] T. Seidl and H.P. Kriegel, “Optimal Multi-Step k-Nearest-
Neighbor Search,” Proc. ACM SIGMOD Conf. Management of Data,
pp. 154-164, 1998.

[25] G. Sheikholeslami, W. Chang, and A. Zhang, “Semantic Clustering
and Querying on Heterogeneous Features for Visual Data,” Proc.
Sixth ACM Int’l Multimedia Conf. (ACM Multimedia '98), pp. 3-12,
Sept. 1998.

[26] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A
Multi-Resolution Clustering Approach for Very Large Spatial
Databases,” Proc. 24th VLDB Conf., pp. 428-439, Aug. 1998.

[27] G. Sheikholeslami, S. Chatterjee, and A. Zhang, “WaveCluster: A
Wavelet-Based Clustering Approach for Multidimensional Data in
Very Large Databases,” The VLDB |., vol. 8, no. 4, pp. 289-304, Feb.
2000.

[28] J.R. Smith and S. Chang, “Transform Features For Texture
Classification and Discrimination in Large Image Databases,”
Proc. IEEE Int’l Conf. Image Processing, pp. 407-411, 1994.

[29] E. Welzl, “Smallest Enclosing Disks (Balls and Ellipsoids),” Proc.
Conf. New Results and New Trends in Computer Science, pp. 359-370,
June, 1991.

[30] D.A. White, R. Jain, “Similarity Indexing with the SS-Tree,” Proc.
12th Int’l. Conf. Data Eng., pp. 516-523, Feb. 1996.

[31] D. Yu, “Multidimensional Indexing and Management for Large-
Scale Databases,” PhD dissertation, State Univ. of New York at
Buffalo, Feb. 2001.

[32] M. Zait and H. Messatfa, “A Comparative Study of Clustering
Methods,” Future Generation Computer Systems, vol. 13, pp. 149-
159, Nov. 1997.

Dantong Yu received the PhD degree in
computer science from State University of New
York at Buffalo. His research interests include
multimedia databases, information retrieval,
data mining, and distributed computing. He
joined the Brookhaven National Lab in 2001 as
part of the DOE Particle Physics Data Grid
(PPDG) group. He coordinates the performance
monitoring and analysis working group in PPDG.

YU AND ZHANG: CLUSTERTREE: INTEGRATION OF CLUSTER REPRESENTATION AND NEAREST-NEIGHBOR SEARCH FOR LARGE DATA... 23

Aidong Zhang received the PhD degree in
computer science from Purdue University, West
Lafayette, Indiana, in 1994. She was an assis-
tant professor in the Department of Computer
Science and Engineering at State University of
New York at Buffalo, from 1994 to 1999. She
has been an associate professor in the Depart-
ment of Computer Science and Engineering at
State University of New York at Buffalo, since
1999. Her research interests include content-
based image retrieval, geographical information systems, distributed
database systems, multimedia database systems, bioinformatics, and
data mining. She serves on the editorial boards of ACM Multimedia
Systems, the International Journal of Multimedia Tools and Applications,
International Journal of Distributed and Parallel Databases, and ACM
SIGMOD DiSC (Digital Symposium Collection). She has also served on
various conference program committees. Dr. Zhang is a recipient of the
US National Science Foundation CAREER award. She is a member of
the IEEE.

> For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

