
Building a reliable and high performance Panda system

By John Hover, Yuri Smirnov, and Dantong Yu

1 Motivation 

The Panda-based production and user analysis system has been identified as one of the most important services provided by the ATLAS Tier 1 facility at BNL.  We note that there are six components in Panda:

1) Panda Server:  providing the programmatic service that dispatches jobs.

2) Monitoring and Logging Server: providing a web-based user interface. 

3) Autopilot Submit Host : Submits basic pilot jobs via Condor-G mechanism. 
4) Autopilot Code Server
: provides HTTP/S download of additional pilot job code.

5) Transformation Server:  provides additional managed production job information.

6) Panda databases: providing information that the other components use.

7) Panda Redirector: Need to clarify the functionality of Panda redirector. Is that an inter-cloud redirector?

The functionality of each of them directly impacts Panda’s scalability, reliability, and performance. While the current implementation of the Panda provides adequate scalability in terms of number of jobs per day, the problem of Panda’s future reliability and the additional performance necessary to meet the demands of full-scale ATLAS computing remains unsolved.  

The Panda Server, Autopilot, and Transformation Servers each represent a single point of failure, and a failure can bring the entire ATLAS production to a halt. The Panda databases represent a performance bottleneck (see Reference 4 for improvement plan), since they are serving as the state for the other stateless components.  The Autopilot Submit Server submits condor-g based pilots for the production jobs, so this server is a single point of failure for whatever jobs are handled by those pilots. Since some portion of the managed ATLAS data transfer is being done via Panda, it is also dependent on reliable Panda functioning. 
International ATLAS management’s decision of adopting the Panda system for ATLAS-wide use changes the emphasis  from single-instance BNL-based experimental development  to a need for a polished, distributable software stack ready for use by other facilities. 

2 Observed Panda Server Failure Modes: 

1) Network Failure, i.e. recent firewall is overloaded with RHIC/ATLAS cross domain traffic. 

2) Hardware Failure:  kernel crashes, power failure, network failure, and  System interrupt errors.
3) Applications:  to be completed by Maxim

4) Operations:  Panda operation procedure needs to be improved.

3 Scope

We propose solutions to address the hardware reliability issues, and reduce the server downtime caused by hardware and Grid middleware failures.  We can also improve Panda system performance when load balance can be utilized.  
4 Proposed Solutions 

Facility Improvement Plan:

1. We are working on improving the Panda facility support documentation at https://www.racf.bnl.gov/experiments/usatlas/gridops/griduiconfig.
2. Improve the reliability and redundancy of servers and their hosting computers. This can be done in several ways, including: move from software to hardware-based RAID for disks, improved memory and load monitoring via Nagios, automatic service restart after failure.
3. Use CFEngine to streamline the deployment of the OS, Grid Middleware, and ATLAS application.
4. Evaluate and implement the hardware based high availability load balancers (Layer 4/5/6 aware switches) to see whether it can be used in the various Panda server processes.   The Panda server processes use HTTP and HTTPS protocols and associated user interfaces for communicating with client and ATLAS production system.  They are stateless.  Therefore it seems to be feasible to add an extra layer of layer 4/5/6 switches to mediate a hardware failure and do load balancing. The load balancing can be applied to both Panda servers and Panda monitor.  The proposed load balancing layer will be able to replace the existing mechanisms for Panda monitor redirection.
5. Plan B (in case Item 4 fails): Evaluate the software based server high availability strategy, i.e. the Linux Virtual Server technology (LVS).
5) Stability of subversion: subversion is not scalable for thousands of clients doing SVN operations. Pilots use wget to retrieve codes from the http cache of RACF subversion server. (note: Torre confirmed that pilot only uses “wget”.)
· We will deploy multiple web proxy servers in front of SVN to ensure that thousands of pilots can retrieve Pilot code from the web caching provided by one of these web caching servers. The multiple web caching proxy servers can be transparently load-balanced by a layer 4 switch or software load balancer, as described in Section 7.

· Maxim is looking into storing code for download in the DB, with Apache intermediary/Cache (so still using wget), allowing metadata such as security signature to be stored with the code. Maxim will discuss with John Hover about this database code repository.

Or

· Check out source code to local files, and allow Pilots jobs download via Web.

5 Panda Development:

1) Improved packaging for easy and scalable deployment. Versioned RPM releases would be ideal.

2) Data/Database partitioning at the level of job IDs or regional job assignment, with associated server functionality.  

3) Server functionality for providing Panda system status and application-level heartbeat for use with LVS and hardware solution.

4) Standardized Web error handler (error code) when an http/https based Panda server process does not function as expected. 

5) Use standard Apache web server in stead of the light weight Python http?

6) Utilities to automate failover and migration of server types from system to system? 

The following figure provided by Torre shows the Panda schematic for regional partitioning, and Panda jobs redirection to distributed Panda servers: 

[image: image1.jpg]Jobs to be processed

pud Tor tas Task-Cloud map

URL retrieval

“angs
Job submission UR

0,
HTTP service ¢ s
Cloud -> Panda
Server URL map
2
Job Job
B
@ Panda server Central DB

interactions

SJH( epued

schedconfig DB

. Central DBs

J





6 Project Participants (Tentative List):

1) RACF/Grid Middleware: John Hover, Dantong Yu, Xin Zhao, Yuri Smirnov, and Ming Yue.

2) RACF/GCE: Rob Petkus and Jason Smith.

3) PAS: Tadashi Maeno, Maxim Potekhin, and Torre Wenaus

7 Potential Solutions to Improve Panda Server Reliability:

RHIC/USATLAS Computing facility will be responsible to choose a cost-effective solution to provide hardware reliability and prevent single point of failures caused by hardware, network, grid middleware, OS corruption, Kernel panic which are not related with applications running on top of hardware.  For the success of our chosen solution, we are adding our suggestions to Panda Development.

7.1 Layer 4/5/7-aware hardware-based load balancers 

We will evaluate the service ability of a hardware-based approach. Cisco model 11000 has been recommended as a potential fit.  There are multiple alternative vendors. The advantages of hardware solutions include much more reliability than software alternative, “24x7” vendor support, and easier diagnosis to the problems of hardware failure or application bugs.  Furthermore, BNL has in-house expertise running hardware-based high availability load balancer.  The architecture is shown in the  following picture.

[image: image2.jpg]Server Load Balancing switch

Panda
Redirector

Panda Server|
JTrans. Server|
Mat. Server

. o AutoPilot





7.2 Software Based Reliability Solution:
In case that the hardware solution is not delivered on time or it is not practical to be integrated into the Panda architecture, we will use software solution as Plan B.  We will evaluate and integrate LVS (Linux Virtual Server) into the system.  LVS consists of Linux directors and real servers.  The Linux directors can be deployed into the existing Panda hosts (the streamline high availability and load balancing, shown in Figure 1), or can use dedicated hardware (standard high availability and load balancing, as shown in Figure 2).  We would recommend that we focus first on high availability, and then move on to load balancing after proving the concept.

[image: image3.jpg]A

Lnux
Directors

Panda Server|
[Trans. Server|
Mat. Server

AutoPilot





Figure 1: Panda Architecture based on  streamline high availability and load balancing.

[image: image4.jpg]Hear beat g Linux
Directors

Panda Server|
Tans. Server
Mat. Server

AutoPilot





1. Figure 2: Panda and its database Architecture based on the standard high availability and load balancing. 

8 Project Schedule:

TBD
We suggest that a planning meeting be called immediately, and that a standing bi-weekly meeting be established. 

Action Item: 

· Rob Petkus will talk with potential vendors and look into eval-and-buy program as of today.

· John Hover will get a Linux based host to run subversion on this Linux server this week.

9 Actual stress testing

1) Simulate failure mode, such as network, hardware, and applications, and test whether the proposed system can recover from the failure mode  (i.e. Unplug any one Panda server to see whether production can continue).

2) Need a Panda load generator to simulate the current Panda server access profile, and run the load generator, and collect performance statistics.

3) Provide performance reports and comparisons on standalone Panda server, and load balanced Panda servers.

10 Evaluation Criteria:

1) Reliable and highly available, ensure service continuations even if a single server fails.

2) Easy to maintain with the current limited FTE.
3) Adequate documentation for both shifters and RACF administrators. 
4) Meet USATLAS Computing Facility SLA.

11 Reference:

1. https://www.racf.bnl.gov/experiments/usatlas/gridops/griduiconfig
2. https://www.racf.bnl.gov/experiments/usatlas/gridops/atlasdbinfo
3. https://twiki.cern.ch/twiki/bin/view/Atlas/PanDA
4. http://www.ultramonkey.org/3/topologies/

5. Building a reliable and high performance MySQL-based database for Panda system.

� Autopilot Code Server shares the apache process with the Panda Monitoring service. For simplicity, we only list Panda monitoring service in this document.





