Spectra and NO Angular Correlations of high momentum charged particle in PHENIX

Quark Matter 2001
Stony Brook, NY (USA), January 15 - 20, 2001
Federica Messer
for the PHENIX Collaboration

Outline

- Motivation
- Setup and data set
- Physics Results
- Summary and Outlook

Motivation

- New Energy regime:
 - (Mini-)Jet Production contributes to particle Yield
 - Investigate the early and hot phase of the collision using hard scattering processes as a probe
- Predictions:
 - In the ultra-high-density medium partons experience energy loss: 'Jet Quenching'
- Observables:
 - Reduced yield of high momentum particles
 - Enhanced acoplanarity

Data Set

- 1.5M Minimum Bias events: total of 15M Tracks
- For this analysis:
 - EAST arm: DCH, PC1 and PC3
 - $-\Delta \phi = 90^{\circ}$ and $\Delta \eta = 0.7$
 - Deflection angle of the track with respect to a straight trajectory (from the vertex).
 - Momentum Resolution (at present):

$$\frac{\sigma_{\mathbf{p}}}{\mathbf{p}} = \frac{\sigma_{\Delta\phi}}{\Delta\phi} = 3.5\% \cdot \mathbf{p} \, \left(\mathbf{GeV/c} \right)$$

Uncorrected Distribution

- Background:
 Products of decays and albedo reconstructed as high momentum particles
- Rejection:
 use vertex (BBC) and outer detectors: PC1(2.5mm)
 and PC3(5mm) match to reject particles not coming
 from vertex.
- Measure and subtract remaining background

Corrections

- using single particle Monte-Carlo tracks
- · embedding in real events
- plateau given by geometrical acceptance and efficiency corrections
- distorsion due to momentum resolution: correction at 5 GeV/c is 20% - 40%
- Multiplicity and p_t corrections factorize

Minimum Bias Distribution

Absolute Normalization : $\pm 20\%$ sys.

Particle Identification

- identified $\pi^-, \pi^0, k^-, \bar{p}$
- relevant contribution of \bar{p}
- summing all the terms ⇒ good agreement with negative spectra

Centrality Selection

Bin	Cross Section	$dN_{ch}/d\eta$	NCollisions	NParticipant
1	0 - 5%	622	$945.2 \pm 15\%$	$346.7 \pm 15\%$
2	5 - 15%	455	$673.4 \pm 15\%$	$270.75 \pm 15\%$
3	15 - 30%	288	$382.9 \pm 15\%$	$178.33 \pm 15\%$
4	30 - 60%		$122.76 \pm 15\%$	$76 \pm 15\%$
5	60 - 80%		$19.32 \pm 60\%$	$19.02 \pm 60\%$
6	80 - 92%		$3.7 \pm 60\%$	$5.025 \pm 60\%$

Ref:nucl-ex/0012008

Raw multiplicity Distribution

Momentum Distributions

Absolute Normalization : $\pm 20\%$ sys.

Central_{Au-Au} / Peripheral_{Au-Au}

- many systematics cancel
- for hard processes:
 Ratio normalized per N Binary collisions ⇒ 1.

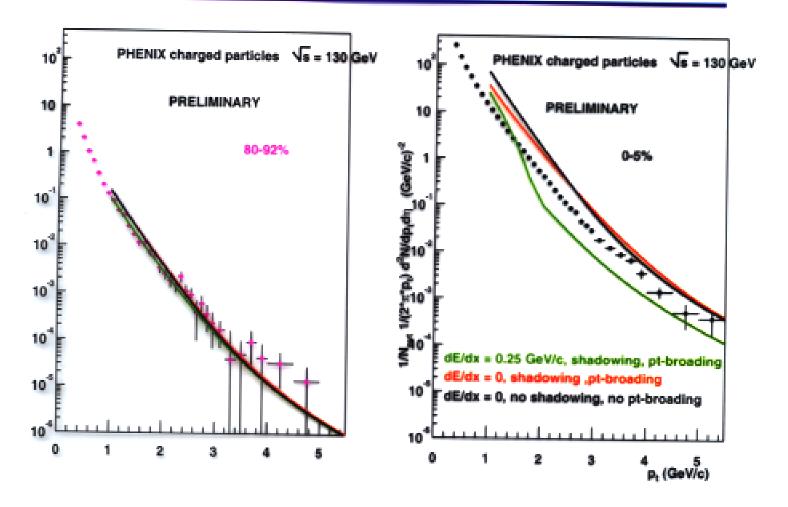
We observe:

- Ratio < 1.
- Tendence to decrease for p_t > 1.5 GeV/c

$Central_{Au-Au}$ / p - p

X.Y. Wang calculation: ratio of charged hadron spectra in central Au - Au@130GeV over p - p collisions normalized by average number of binary collisions

Yield vs Number of Collisions


Yield vs Number of Participants

Summary

- Negative Charged Particle Distribution (Minimum Bias)
 - excellent agreement with h⁻ distribution from West Arm.
 - good agree up to 2 GeV/c with π^0
 - contribution from \(\bar{p}\) is important
- Centrality Dependence of Charged Particle Distributions
 - Peripheral collisions similar to p p
 - Ratio Central to peripheral and/or to p p < 1.
 - At small p_t distributions scale as Npart
 - At High p_t (in peripheral) scale as Ncoll
 - At High p_t in central and semi-central (30%) DO NOT scale as Neoll
- Comparison with Theory
 - Data fall below the No Energy Loss curve
- A new run is just behind the corner:
 - Need higher p_t and angular correlations to make a more definitive conclusion

Theory predictions

Ref. X.-N. Wang, Phys. Rev. C61, 064910 (2000)

Ref: X.-N. Wang, nucl-th/0009019

- Charged particle calculation for different centralities
- Good Agreement in describing the peripheral collisions
- For central
 - Data are not consistent with caluculation without Energy Loss;
 - Data fall above curve for dE/dx = 0.25 GeV/fm
 - Missing contributions of p and p̄ ?

Theory predictions

Ref: X.-N. Wang, Phys. Rev. C61, 064910 (2000)

Ref: X.-N. Wang, nucl-th/0009019

Energy Dependence

fit with power-law function:

$$\frac{1}{\mathbf{p_t}} \cdot \frac{\mathbf{dN}}{\mathbf{dp_t}} = \frac{\mathbf{b}}{(\mathbf{p_t} + \mathbf{p_0})^n}$$

interpolation at √s = 130 GeV/c:

$$-p_o = 1.68 (GeV/c)$$
 and $n = 12.26$

Local Inverse Slope

 \bullet Inverse slope changes vs centrality and p_t

