Is there flow without flow at RHIC?

a.k.a.

Is there elliptic flow without radial flow at RHIC?

a.k.a.

Is there elliptic anisotropy without radial flow at RHIC?

P. Huovinen

with

P.F. Kolb and U. Heinz

Lawrence Berkeley National Laboratory, USA

and

Department of Physics, The Ohio State University, USA
Anisotropic particle distribution

Non-central collision:

Anisotropy in configuration space
\[
\downarrow
\]
Anisotropy in particle distributions
i.e. in momentum space

Characterized by Fourier coefficients:

\[
E \frac{dN}{d^3p} = \frac{dN}{2\pi p_t dp_t dy} \times [1 + 2v_1(p_t) \cos(\phi) + 2v_2(p_t) \cos(2\phi) + \cdots]
\]

or as averaged over \(p_t \):

\[
\frac{dN}{dyd\phi} = \frac{dN}{2\pi dy} \times [1 + 2v_1 \cos(\phi) + 2v_2 \cos(2\phi) + \cdots]
\]
Bjorken brick

- boost invariant
- rectangular in transverse plane
- opaque
- emission
 - on surface
 - at final breakup
- parameters: R_y/R_x, τ/R_x, v_x, v_y, T

Modified Cooper-Frye:

$$E \frac{dN}{d^3p} = \int d\sigma p^\mu f(p \cdot u, T) \theta(d\sigma p^\mu)$$
v_2 of pions without flow

No satisfactory fit with any realistic parameters
v_2 of pions with flow

![Graph showing $v_2(\mathbf{p}_t)$ vs. p_t (GeV/c)]

- Blue line: $R_y/R_x \neq 1$, $v_y/v_x \neq 1$
- Green line: $R_y/R_x = 1$, $v_y/v_x \neq 1$
- Red line: $R_y/R_x \neq 1$, $v_y/v_x = 1$

Data: $v_2(\mathbf{p}_t)$ of charged particles, not pions
Hydrodynamical model

- Boost-invariant 2+1 dim. model
- Initial spatial distributions based on wounded nucleon model
- Tuned to reproduce charged particle multiplicity in central collisions measured by Phobos collaboration
 \[- \frac{dN}{d\eta} \bigg|_{\eta<1} = 545 \]
 \[- \frac{\bar{p}}{p} = 0.65 \]
- Decoupling temperature unknown
 \[- \text{use } T_f \approx 140 \text{ MeV and } T_f \approx 120 \text{ MeV} \]
- Equations of state with
 \[- T_c = 165 \text{ MeV} \]
 \[- T_c = \infty \]
- Initial parameters at b=0 collision
 \[- \epsilon_0 = 23.0 \text{ or } 22.3 \text{ GeV/fm}^3 \]
 \[- n_{8,0} = 0.12 \text{ or } 0.25 \text{ fm}^{-3} \]
 \[- \tau_0 = 0.6 \text{ fm} \]
 \[- T_0 = 330 \text{ or } 270 \text{ MeV} \]
- See Peter Kolb’s poster
v_2 @ RHIC, $\sqrt{s} = 130$ AGeV

charged hadrons, $|\eta| < 1.3$, minimum bias

Data: STAR collaboration, nucl-ex/0009011
$v_2 \oplus$ RHIC, $\sqrt{s} = 130$ AGeV

pions and protons, $y = 0$, minimum bias
Summary

- Finite v_2 is *not* a signal of flow
- The shape of $v_2(p_t)$ is!
- The data strongly favours existence of collective motion
- Hydrodynamical model gives excellent fit to data
- Collision system behaves like a system which thermalizes rapidly