What To Expect from LHC

- LHC (Large Heavy ion Collider) is expected to provide pA and AA collisions.
- Energy: 7 TeV/charge

<table>
<thead>
<tr>
<th>Ion</th>
<th>L_{max}</th>
<th>$\langle L \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{208}\text{Pb}^{82}$</td>
<td>1.0×10^{27}</td>
<td>4.2×10^{26}</td>
</tr>
<tr>
<td>$^{120}\text{Sn}^{50}$</td>
<td>1.7×10^{28}</td>
<td>7.6×10^{27}</td>
</tr>
<tr>
<td>$^{84}\text{Kr}^{36}$</td>
<td>6.6×10^{28}</td>
<td>3.2×10^{28}</td>
</tr>
<tr>
<td>$^{40}\text{Ar}^{18}$</td>
<td>1.0×10^{30}</td>
<td>5.2×10^{29}</td>
</tr>
<tr>
<td>$^{16}\text{O}^{8}$</td>
<td>3.1×10^{31}</td>
<td>1.4×10^{31}</td>
</tr>
</tbody>
</table>
What to Expect From CMS

A Compact Solenoidal Detector for LHC

Total Weight: 14.500 t.
Overall diameter: 14.60 m
Overall length: 21.60 m
Magnetic field: 4 Tesla

Pablo Yepes, Rice U.

Heavy Ion Physics with CMS, Jan 16, 2001
A minimum bias Pb-Pb event in CMS

Detector designed for pp. However due to flexible design offers unique capabilities for AA
Some CMS Assets

- CMS has excellent muon detection capabilities:
 - $|\eta|<1.3$ for barrel and $|\eta|<2.4$ with endcaps.
 - Good mass resolution: 46 MeV for the Upsilon.
 - Efficient suppression of background from π/K decays:
 - Electromagnetic calorimeter at 1.3 m from beam axis.
 - P_T threshold at 3.5 GeV/c for a single muon to reach the μ-chambers.

- Large calorimeter coverage with good jet reconstruction capabilities.
Physics Topics

- Event Characterization
- Quarkonium Production: Upsilon and J/Ψ
- $Z \rightarrow \mu\mu$
- Jet Production:
 - Single/Double jet ratios.
 - Z and $γ$ tagged jets
- Ultra-Peripheral Collisions: $γγ$ and $γ$-Pomeron
In spite of very strong magnetic field (4 Tesla) there is a good correlation between centrality and transverse energy.
A scaling law:

\[\sigma_{AA} = A^{2\alpha} \sigma_{pp} \]

- \(\sigma_{pp} \) from CDF @ 1.8 TeV extrapolated to 5.5(7) TeV.
- \(\alpha = 0.9(0.95) \) for J/\(\Psi \) (Upsilon).

<table>
<thead>
<tr>
<th></th>
<th>(Pb+Pb)</th>
<th>(Ca+Ca)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J/(\Psi) (mb)</td>
<td>58.0</td>
<td>3.6</td>
</tr>
<tr>
<td>(\Psi') (mb)</td>
<td>1.4</td>
<td>0.09</td>
</tr>
<tr>
<td>(\Upsilon) ((\mu b))</td>
<td>410</td>
<td>21</td>
</tr>
<tr>
<td>(\Upsilon') ((\mu b))</td>
<td>120</td>
<td>6.4</td>
</tr>
<tr>
<td>(\Upsilon'') ((\mu b))</td>
<td>41</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Quarkonia Acceptance in μ–Chambers

- J/Ψ with $p_T > 5$ GeV in Barrel
- Upsilon down to low transverse momentum
Quarkonia Reconstruction

- Essential sub-detectors:
 - Tracking devices
 - Muon system

- Pessimistic assumptions for background estimates:
 - $dN^{\text{ch}}/dy=8000$ (most generators <5500)
 - $<p_t>^\pi=0.48 \text{ GeV/c}$ (HIJING 0.39 GeV/c)
 - $<p_t>^k=0.67 \text{ GeV/c}$

Special Heavy Ion Tracking Algorithm

Significant Muon background from π and K decays
J/ψ Signal

Min bias collisions - 1 month run - barrel only
muons with P > 3.5 GeV/c

Pb-Pb
Ψ/cont. = 1.0

Ca-Ca
Ψ/cont. = 9.7

L = 10^{27} \text{ cm}^2 \text{ s}^{-1}

L = 2.5 \times 10^{29} \text{ cm}^2 \text{ s}^{-1}

1 month running at top Luminosity:
J/ψ’s detected and reconstructed in the Barrel:

<table>
<thead>
<tr>
<th></th>
<th>Ca-Ca</th>
<th>Pb-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td># J/ψ</td>
<td>2.2 \times 10^5</td>
<td>10^4</td>
</tr>
<tr>
<td>S/B</td>
<td>9.7</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Pablo Yepes, Rice U.

Heavy Ion Physics with CMS, Jan 16, 2001
Upsilon in Pb-Pb

1 month: 22000 Υ and 7500 Υ'
detected in the barrel

Combinatorial background subtracted after reconstruction

Di-muon Invariant Mass (GeV/c^2)

Opposite-sign di-muon invariant mass (GeV/c^2)

Background contributions

L = 10^{27} cm^{-2} s^{-1}

Upsilon/cont. = 1.6

Total

Decay-b

Decay-c

b-b

c-c

Events/25 MeV/c^2

Events/25 MeV/c^2
Pablo Yepes, Rice U. Heavy Ion Physics with CMS, Jan 16, 2001

Upsilon in Ca-Ca

\[L = 2.5 \times 10^{29} \text{ cm}^{-2}\text{s}^{-1} \]

Upsilon/cont. = 9.4

- 1 month:
 - 340000 \(\Upsilon \)
 - 115000 \(\Upsilon' \)
- Only barrel used.

\(\Upsilon \) events/25 MeV/c^2

Opposite-sign di-muon invariant mass (GeV/c^2)

- Total
- b-b
- Decay-Decay
- Decay-b
- Decay-c

- 10^5
- 10^4
- 10^3

- 8.5
- 8.75
- 9
- 9.25
- 9.5
- 9.75
- 10
- 10.25
- 10.5
- 10.75
- 11
Quarkonia Reference

- At SPS, J/Ψ is compared to Drell-Yan.
- At LHC Drell-Yan contribution is negligible.
- Z⁰ proposed as reference to Υ production.
 - M_{Z⁰} > M_{Υ}
 - Different production mechanisms:
 - Z⁰: antiquark-quark, quark-gluon and antiquark-gluon.
 - Υ: gluon-gluon.

- Cross check di-muon reconstruction algorithm
Jets are Easy

Jet quenching

- monojet/dijet enhancement
- jet-$Z^0 \rightarrow \mu\mu$ or jet-γ

Jet Finding
100 GeV E_T
- $\epsilon \sim 100\%$
- $\sigma(E_T)/E_T = 11.6\%$

$E_r(\text{jet1}) = 92.6 \text{ GeV}$
$E_r(\text{jet2}) = 86.9 \text{ GeV}$

$dN_{ch}/dy = 8000$

Z+jet event in the Heavy Ion collision
$dN_{ch} / dY = 5000$

Pt(Z) = Et(Jet) = 100 \text{ GeV}$

Pablo Yepes, Rice U.

Heavy Ion Physics with CMS, Jan 16, 2001
Balancing Photons and Jets

- $E_t^{\text{jet}}, \gamma > 120$ GeV in the barrel
- 1 month:
 - 900 events for Pb-Pb
 - 10^4 events for Ca-Ca

2 weeks at $L=10^{27}$ cm$^{-2}$s$^{-1}$

$E_{T\gamma}/\pi^0 - E_{T\text{Jet}}$ (GeV)

Events/4 GeV
Ultra-Peripheral Collisions

\[\sigma_{AA}(M) \text{ (barn)} \]

\[\text{hadrons} \]

\[\text{events/sec/GeV} \]

\[\text{events/year} \]

\[M \text{ (GeV)} \]

\[\gamma \text{ or } P \]

\[\text{Meson or lepton/quark pair} \]

\[\gamma \text{ or } P \]
Conclusions

- **CMS** is provides unique tools to study Heavy Ion Collisions at LHC.

- **Physics considered:**
 - Event characterization with large rapidity coverage.
 - Quarkonium production: Υ and J/Ψ families.
 - Jet quenching.
 - Ultra-Peripheral collisions.
Addendum: Tracking

- Developed for dN^{ch}/dy=8000 and dN^{0}/dy=4000.
- Track only particles with tracks in μ detector.
- Use μ-chambers tracks as seeds.
- Use only tracking detector providing 3D space points.

![Graph showing detector pitch and occupancy]

Detector Pitch μm
- MSGC 200
- MSGC 240
- Silicon 147

Radius of MSGC layer (cm)
LHC Parameters (Addendum)

- Bunches 7.5 cm long every 125 ns.
STAR First Ultra-Peripheral Collisions

Two oppositely charged co-linear tracks

Eventually additional coincident signal in ZDC

Typical Event:

Not as dramatic as central collision