Antiproton Production and Re-absorption in p+A Collisions at the AGS

Saskia Mioduszewski
Brookhaven National Laboratory
for the E910 Collaboration
Overview

- E910 Experiment
- Centrality in p+A Collisions
- Antiproton Production
 - Beam energy
 - Target Size
 - Centrality
- Re-absorption Cross Section
- Comparison with Antilambda
- What have we learned?
The E910 Collaboration

R. Fernow, H. Kirk, S. Gushue, L. Remsberg, M. Rosati
Brookhaven National Laboratory

B.A. Cole, I. Chemakin, H. Hiejima, M. Moulson,
D. Winter, X. Yang, W.A. Zajc, Y. Zhang
Columbia University, Nevis Laboratories

M. Justice, D. Keane
Kent State University

G. Rai
Lawrence Berkeley National Laboratory

V. Cianciolo, E. Hartouni, M. Kreisler, R. Soltz,
M.N. Namboodiri, J. Thomas
Lawrence Livermore National Laboratory

A.D. Frawley, N. Maede
Florida State University

M. Gilkes, R.L. McGrath, Y. Torun
SUNY, Stonybrook

S. Mioduszewski, D. Morrison, K. Read, S. Sorensen
University of Tennessee

J. H. Kang, Y. H. Shin
Yonsei University

1 Now at Oak Ridge National Laboratory, 2 Now at Brookhaven National Laboratory, 3 Now at Iowa State University
E910 Spectrometer at the MPS Facility of the AGS

- MPS Magnet
- EOS TPC
- Downstream tracking:
 - MPS Drift Chambers, Wire Chambers
- PID:
 - TPC dE/dx, TOF, Segmented Cherenkov
- Spring 96 Proton Run at AGS
- Be, Cu, Au, U targets
- 6, 12.5, 18 GeV/c Beam Momenta
- O(15) Million Central and MinBias Triggers
MPS Magnet
TOF Wall
TOF Wall
Centrality in E910

- Centrality is defined in terms of the number of projectile collisions ν
- ν is determined from the number of grey tracks N_g
- N_g is defined as the number of slow protons and deuterons

- $\nu = \langle \nu \rangle (N_g)$
Relate N_π to v

- $0.5 < p < 2.4 \text{ GeV/c}$
- slow neutrons
- $0.25 < p < 1.2 \text{ GeV/c}$
- slow protons

Grey Tracks:

```
Grey Tracks
```

Grey Tracks

Grey Tracks

Physics Goals

- Characterize the centrality of an event by the number projectile collisions

- Antiproton re-absorption
 - system size
 - collision geometry
Antiprotons

Targets: Au, Cu, Be
Beam momenta: 12.3 and 17.5 GeV/c
Measure of ν

To address:
- Production Mechanism
- Re-absorption in the Nucleus
Identification of Antiprotons

PID with TOF

~ 4 million interactions of 17.5 GeV/c p+Au
Antiproton Acceptance

- Acceptance with momentum reconstruction
- Results shown in y-p_T coverage shown by solid lines
- Antilambda feeddown estimated $\leq 5\%$
Measured Yields $p+Au$

Comparison at Different Beam Momenta

$p_T < 800$ MeV/c
$y = [1.0, 2.0]$
Measured Yields 12.3 GeV/c
Comparison of Different Targets

\[x \times 10^{-3} \]

\[\frac{dn}{dy} \]

\[\frac{1}{2m_T} \frac{dn}{dm_T} \]

- \(p + Be \)
- \(p + Cu \)
- \(p + Au \)

\[p_T < 800 \text{ MeV/c} \]
\[y = [1.0, 2.0] \]
Inverse Slopes of m_T Distributions

$$\frac{1}{2\pi m_T} \frac{dn}{dm_T} = C_0 e^{-\frac{(m_T - m_0)}{T}}$$

<table>
<thead>
<tr>
<th>Energy (GeV/c)</th>
<th>Target</th>
<th>Slope ($1/\mu$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>p+Au</td>
<td>157 ± 34</td>
</tr>
<tr>
<td>12</td>
<td>p+Au</td>
<td>106 ± 62</td>
</tr>
<tr>
<td>12</td>
<td>p+Cu</td>
<td>108 ± 47</td>
</tr>
<tr>
<td>12</td>
<td>p+Be</td>
<td>86 ± 19</td>
</tr>
</tbody>
</table>
Integrated dn/dy over $y=[1.0, 2.0]$ ($p_T<800$ MeV/c)

- 17.5 GeV/c p+Au
 $4.61 \pm 0.34 \times 10^{-4}$
- 12.3 GeV/c p+Au
 $1.39 \pm 0.36 \times 10^{-4}$
- 12.3 GeV/c p+Cu
 $2.03 \pm 0.37 \times 10^{-4}$
- 12.3 GeV/c p+Be
 $2.22 \pm 0.42 \times 10^{-4}$

- Increasing yield with beam momentum
- Decreasing yield with target size
Dependence of Yields on Available Kinetic Energy Squared

- Antiproton Yields in p+p data found to increase with
 \[(KE)^2 = (\sqrt{s} - 4m_p)^2\]
 (P. Stankus, thesis, 1993.)

- Indicating 3-body final state (instead of 4-body from \((KE)^{3.5}\) dependence)
Comparison with other Experiments

Compare with E802

- Agreement within errors
- Different conclusion
Mean Antiproton Multiplicity as a Function of ν

Assumptions:

- **First collision model**

 Dominant antiproton production is in first $p+N$ collision

- **Produced antiprotons follow path of projectile, thus re-absorption depends on ν**

 ν is a measure of number of mean-free paths antiproton must traverse in nuclear medium

\[
\sigma (p + A \rightarrow \bar{p}) = \sigma (p + p \rightarrow \bar{p}) e^{-\frac{\sigma_{abs}}{\sigma_{pN}} (\nu - 1)}
\]

\[
\frac{\nu - 1}{\sigma_{pN}} = \text{thickness of nucleus seen by antiproton}
\]
Mean Antiproton Multiplicity as a Function of v

- Fit to attenuation factor folded with $P_{N_g}(v)$:

$$\sum_v P_{N_g}(v) \sigma(p+p \rightarrow \bar{p}) e^{-C(v-1)}$$

$$C = \frac{\sigma_{abs}}{\sigma_{pN}} = 0.23 \pm 0.09$$

$$\sigma_{abs} = 6.9 \pm 2.7 \text{ mb}$$

(4.0 ± 1.6 mb) in the context of this model!

$\langle p_{lab} \rangle \approx 2.5 \text{ GeV/c}$
Mean Antilambda Multiplicity as a Function of ν

\[C = \frac{\sigma_{abs}}{\sigma_{pN}} = 0.23 \pm 0.09 \]

\[\frac{\bar{p}}{\bar{\Lambda}} \]

\[C = \frac{\sigma_{abs}}{\sigma_{pN}} = 0.22 \pm 0.04 \]
Λ / p vs. ν

- p yields for 17.5 GeV/c $p+Au$ as a function of ν

- Λ yield for $p+p$

Gazdzicki et al, ZP C71, 55 (1996) extrapolated to $p_{\text{LAB}} = 17.5$ GeV/c

- p yield at $\nu=1$ from E910 12.3 GeV/c $p+Be$ scaled to 17.5 GeV/c

PRELIMINARY
Conclusions

What have we learned about antiproton production and re-absorption?

- Antiproton yield increases with beam momentum
 - 17.5 GeV/c yields $\sim 3.3 \times 12.3$ GeV/c yields
 - Yields can be described with dependence on $\langle KE \rangle$
- Antiproton yield decreases with increasing target size
- Yield in p+Au data is $37 \pm 20\%$ less than p+Be data
Conclusions

- Shapes of m_T distributions indicate effects of reabsorption:
 - Inverse slope smaller for Be than Au
- Yields decrease with increasing ν
- "Effective" annihilation cross section fraction of free annihilation cross section
 - In medium, $\sigma^*_{anni} \sim 1/5 \sigma_{anni}$
- Absorption of Λ very similar to \bar{p}