J/ψ PRODUCTION AND SUPPRESSION
IN NUCLEAR COLLISIONS

Jianwei Qiu*
Iowa State University

Contents:

1. Hadronic Production of J/ψ Mesons
 — Can Fermilab data on J/ψ polarization be understood?

2. J/ψ Suppression without QGP

3. Summary and Outlook

Acknowledgment:

We thank O. Drapier and C. Lourenco for help on NA50 data.

*Research done with James P. Vary and Xiaofei Zhang
1. Hadronic Production of J/ψ Mesons

- Process: \(A(P) + B(P') \rightarrow J/\psi(q) + X \)

- Parton model picture:

 ![Diagram](image)

- Energy exchange: \(> 2M_c \sim 3 \text{ GeV} \)

- \(c\bar{c} \) produced at a short-distance: \(r_H \leq \frac{1}{2M_c} \sim \frac{1}{15} \text{ fm} \)
 \(\Rightarrow J/\psi \) is unlikely to be formed at \(\frac{1}{15} \text{ fm} \)

- Time dilation:
 \(\Rightarrow \) Spectators are "frozen" during the hard collision
 \(\Rightarrow \) Their interactions are suppressed: \(\left[\frac{1/R^2}{(2M_c)^2 + q_T^2} \right] \)

- Cross section is factorized:

 \[\sigma_{J/\psi} \approx \sum_{a,b} \int dx \phi_{a/A}(x) \int dx' \phi_{b/B}(x') \hat{\sigma}_{ab \rightarrow J/\psi}(x, x') \]

- The debate is on the transition from the pre-J/ψ partonic states (\(c\bar{c} \) pair plus coherent partons) to J/ψ mesons
EXISTING PRODUCTION MODELS:

- Non-relativistic QCD (NRQCD) Model:
 - All colored and uncolored pre-\(J/\psi\) partonic states can become color-singlet \(J/\psi\) mesons
 - Transition probabilities are proportional to non-perturbative local matrix elements
 - Factorized cross section:
 \[
 \hat{\sigma}_{ab \rightarrow J/\psi} \approx \sum_{[O]} \hat{\sigma}_{ab \rightarrow [O]}(m_{c\bar{c}}, k_i = 0) \langle O_{J/\psi}(0) \rangle
 \]
 - Approximation: \(k_i \ll m_{c\bar{c}}\) (velocity expansion)

- Color Evaporation Model:
 - All \(c\bar{c}\) pairs with invariant mass less than open charm threshold \((m_{c\bar{c}} < m_{D\bar{D}})\) can become \(J/\psi\) mesons
 - Transition probability from a \(c\bar{c}\) pair to a \(J/\psi\) meson is independent of the pair's color and its invariant mass
 - Factorized cross section:
 \[
 \hat{\sigma}_{ab \rightarrow J/\psi} \approx F_{c\bar{c} \rightarrow J/\psi} \int_{4M_c^2}^{4M_D^2} dm_{c\bar{c}}^2 \frac{d\hat{\sigma}_{ab \rightarrow c\bar{c}}(m_{c\bar{c}})}{dm_{c\bar{c}}^2}
 \]
 - Approximation: \(F_{c\bar{c} \rightarrow J/\psi}\) is a constant
NRQCD Model vs. CDF Data

- Prompt J/ψ not from χ_c decay. NRQCD predictions with the normalization adjusted to fit the data (solid). Color singlet channel with (dotted) and without (dashed) gluon fragmentation.

![Graph](image1.png)

Figure 1

- Prompt ψ' as a function of p_T:

![Graph](image2.png)

Figure 3

COLOR EVAPORATION MODEL VS. DATA

- Charm hadroproduction as a function of collision energy.

- Charmonia production as a function of p_T:

CAN POLARIZATION DISTINGUISHES TWO MODELS?

- Measure angular distribution of $\mu^+ \mu^-$ in J/ψ decay

![Diagram](image)

- Normalized distribution:

$$I(\cos \theta^*) = \frac{3}{2(\alpha + 3)} (1 + \alpha \cos \theta^*)$$

$$\alpha = \begin{cases}
+1 & \text{fully transverse} \\
0 & \text{unpolarized} \\
-1 & \text{fully longitudinal}
\end{cases}$$
NRQCD Model vs. CDF Data on Polarization*

- J/ψ polarization as a function of p_T:

- ψ' polarization as a function of p_T:

QCD FACTORIZATION FOR HADRONIC J/ψ PRODUCTION *

- Total hadronic J/ψ cross section:

\[
\sigma_{AB \rightarrow J/\psi} \approx \sum_{[c\bar{c}]} \int dm_{c\bar{c}}^2 \left[\frac{d\sigma_{AB \rightarrow [c\bar{c}]} }{dm_{c\bar{c}}^2} + O \left(\frac{1}{R^2} \right) \right] \\
\times F_{[c\bar{c}] \rightarrow J/\psi} (m_{c\bar{c}}^2)
\]

- Hadronic J/ψ production at large q_T:

\[
\frac{d\hat{\sigma}_{ab \rightarrow J/\psi} }{dq_T^2 dy} = \frac{d\hat{\sigma}^{(R)}_{ab \rightarrow J/\psi} }{dq_T^2 dy} + \frac{d\hat{\sigma}^{(Y)}_{ab \rightarrow J/\psi} }{dq_T^2 dy}
\]

- \(\hat{\sigma}^{(R)} \) resums large \(\ln(q_T^2/m_{c\bar{c}}^2) \) to all orders in \(\alpha_s \)

- \(\hat{\sigma}^{(Y)} = J/\psi \) produced at a distance scale \(\sim 1/q_T \)

*J.-W. Qiu and G. Sterman, in preparation
Transition Probability: \(F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \)

\[
F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \propto \int \tilde{m}_{c\bar{c}}^2 K_{[c\bar{c}]}(m_{c\bar{c}}^2, \tilde{m}_{c\bar{c}}^2) |\bar{\psi}(k)|^2 \\
\text{with } \tilde{m}_{c\bar{c}}^2 = 4M_c^2 + k^2
\]

- If \(J/\psi \) mesons are formed without gluon radiation following the production of the \(c\bar{c} \) pairs,
 \[
 F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \propto |\bar{\psi}(k)|^2 \quad \text{with } m_{c\bar{c}}^2 = 4M_c^2 + k^2
 \]
 Narrow width of \(J/\psi \) wave function leads to a good velocity expansion and the NRQCD Model

- **Leading power terms in NRQCD Model** \(\iff \) assume
 \[
 F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \approx \langle O_{c\bar{c} \to J/\psi}(0) \rangle \delta(1 - \frac{M_{J/\psi}^2}{m_{c\bar{c}}^2})
 \]
 \(\Rightarrow F \) with \(m_{c\bar{c}} > M_{J/\psi} \) are strongly suppressed!

- Beyond leading power terms, NRQCD formalism breaks down for \(J/\psi \) total cross section due to the spectator interactions

- **Color evaporation model** \(\iff \) assume
 \[
 F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \approx \text{Constant} \times \theta(m_{D\bar{D}}^2 - m_{c\bar{c}}^2)
 \]
 independent of color and invariant mass of the pair
 \(\Rightarrow F \) with \(m_{c\bar{c}} > M_{J/\psi} \) are Not suppressed!
QCD Factorization:

\[F_{[c\bar{c}]} \rightarrow J/\psi (m_{c\bar{c}}^2) \propto \frac{1}{z} \]

When \(m_{c\bar{c}}^2 > 4M_c^2 \),

- Without radiation:
 \[\tilde{\psi}(k) \]
 - Very small \(F_{[c\bar{c}]} \rightarrow J/\psi \)
 \[k = m_{c\bar{c}} - 2M_c \]

- With radiation:
 - Heavy quark mass suppresses radiation
 - Radiation reduces invariant mass
 \[\overline{m}_{c\bar{c}}^2 < m_{c\bar{c}}^2 \]
 \[\Rightarrow \text{Smaller invariant mass enhances} \]
 the \(F_{[c\bar{c}]} \rightarrow J/\psi (m_{c\bar{c}}^2) \) due to \(|\tilde{\psi}|^2 \).

\[\Rightarrow \text{Transition probability is between the approximations of NRQCD and Color Evaporation Model.} \]
Transition probability:

\[F_{[c \bar{c}] \rightarrow \pi^0 (m_{c\bar{c}})} \propto \int d\bar{m}_{c\bar{c}}^{\pm} K_{[c \bar{c}]} (m_{c\bar{c}}, \bar{m}_{c\bar{c}}^{\pm}) |\tilde{\psi}(k)|^2 \]

Narrow width

⇒ Velocity expansion

⇒ NRQCD Model

\[\langle k \rangle \sim \left(\frac{M_c}{3} \right)^2 \]

QCD Factorization

Color evaporation

model
Why both NRQCD and Color Evaporation Model work well for CDF data?

\[\sqrt{s} \gg Q_T \]

* When \(Q_T \gg M_{J/\psi} \), \(\frac{d\sigma_{AB \to c\bar{c}}}{dm_{c\bar{c}}^2} \sim \text{Constant} \)

for \(m_{c\bar{c}}^2 \in [4M_c^2, 4M_b^2] \).

\[\Rightarrow \sigma_{AB \to J/\psi} \approx \int dm_{c\bar{c}}^2 \left(\frac{d\sigma_{AB \to c\bar{c}}}{dm_{c\bar{c}}^2} \right) \cdot F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \]

\[\text{insensitive to the shape of } F_{c\bar{c} \to J/\psi}(m_{c\bar{c}}^2) \sim \text{Constant} \]

* However, three production mechanisms should predict different nuclear effect, because the interactions with nuclear medium are sensitive to the formation from a pre-\(J/\psi \) partonic state to a physical \(J/\psi \).
Understanding the J/ψ Polarization*

- When \(q_T^2 \gg M_{J/ψ}^2 \), reliable QCD calculations require to resum the large logarithms, \(\ln^n(q_T^2/M_{J/ψ}^2) \)

- Logarithms are resummed into fragmentation functions

\[
\frac{d\sigma^{(R)}_{ab \to J/ψ}}{dq_T^2 \, dy} = \frac{d\sigma_{ab \to d}}{dp_T^2 \, dy} (\vec{p}_d = \frac{\vec{q}}{z}) \otimes D_{d \to J/ψ}(z)
\]

- Due to heavy quark mass, we can approximate

\[
D_{d \to J/ψ}(z) \propto D_{d \to g^*}(z; m_{c\bar{c}}) \otimes \bar{F}_{[c\bar{c}] \to J/ψ}(z', m_{c\bar{c}})
\]

- Virtual gluon, immediately decays into a \(c\bar{c} \) pair, is more likely to be longitudinally polarized when \(q_T \gg m_{c\bar{c}} \)

- Use inclusive Drell-Yan process as an example

\[
\alpha = \frac{d\sigma_{AB \to γ^*_T}}{dq_T^2 \, dy} - \frac{d\sigma_{AB \to γ^*_L}}{dq_T^2 \, dy} + \frac{d\sigma_{AB \to γ^*_T}}{dq_T^2 \, dy} + \frac{d\sigma_{AB \to γ^*_L}}{dq_T^2 \, dy}
\]

\[
\sigma_{AB \to γ^*_\lambda} = \sigma^{(R)}_{AB \to γ^*_\lambda} + \sigma^{(Y)}_{AB \to γ^*_\lambda}
\]

*Jianwei Qiu and Xiaofei Zhang, hep-ph/0101004
DRELL-YAN POLARIZATION α_{DY}

- Drell-Yan α_{DY} at $Q = 5$ GeV and $\sqrt{S} = 1.8$ TeV with (solid) and without (dashed) resummation: $\sigma^{(R)}_{DY}$.

- CDF data on $\alpha_{J/\psi}$ along with Drell-Yan α_{DY} at $Q = 3.1$ GeV and $\sqrt{S} = 1.8$ TeV.
2. J/ψ Suppression without QGP

- Multiple scattering in nuclear medium breaks J/ψ
 \Rightarrow J/ψ suppression

- The ordinary nuclear absorption
 - J/ψ color singlet
 - J/ψ-Nucleon absorption
 $\sigma_{\text{abs}}^{J/\psi-N} \sim 3 \text{ mb}$
 - Same σ_{abs} along the path

\Rightarrow Glauber Model:

$$\sigma_{AB} \approx AB \sigma_{NN} e^{-\rho_0 \sigma_{\text{abs}}^{J/\psi-N} L_{AB}}$$

\Rightarrow Expect a straight line on a semi-log plot vs. the effective medium length L_{AB}

- Need $\sigma_{\text{abs}} \sim 7 \text{ mb}$ to fit most data, but Pb-Pb data.
NEW SUPPRESSION MECHANISM

- J/ψ are not produced at the point of hard collision
 \Rightarrow partonic $c\bar{c}$ states going through medium

- Multiple scattering with nuclear medium increase the invariant mass of the $c\bar{c}$ pairs
 \Rightarrow push some $c\bar{c}$ pairs over the open charm threshold
 \Rightarrow "suppress" the production of J/ψ (see figure)

- The suppression rate depends on
 - Gain of invariant mass per medium length: ϵ
 - Functional form of the transition probability:
 \[F_{[c\bar{c}] \rightarrow J/\psi(m_{c\bar{c}}^2)} \]
 - Functional form of the $c\bar{c}$ cross section:
 \[\frac{d\sigma_{AB \rightarrow c\bar{c}}}{dm_{c\bar{c}}^2} \]

- Expect a non-linear behavior on the semi-log plot
\(\bar{m}_{c\bar{c}}^2 = m_{c\bar{c}}^2 + \epsilon^2 L > 4M_D^2 \)
\(\Rightarrow J/\psi \) Suppression

\(\bar{m}_{c\bar{c}}^2 < 4M_D^2 \)
More radiation

\[F_{[c\bar{c}] \rightarrow J/\psi (m_{c\bar{c}}^2)} \longrightarrow F_{[c\bar{c}] \rightarrow J/\psi (\bar{m}_{c\bar{c}}^2)} \] Smaller
\[F \]

Without multiple scattering

\[\int_{4M_c^2}^{4M_D^2} d\bar{m}_{c\bar{c}}^2 \longrightarrow \int_{4M_c^2}^{4M_D^2 - \epsilon^2 L} d\bar{m}_{c\bar{c}}^2 \] Smaller
\[\text{phase space} \]

\(\Rightarrow \) Suppression!
COMPARISON WITH J/ψ SUPPRESSION DATA

- J/ψ production as a function of effective medium length:

![Graph showing J/ψ production versus effective medium length](image)

- Ratio of J/ψ over Drell-Yan as a function of E_T:

![Graph showing ratio of J/ψ to Drell-Yan versus E_T](image)

3. Summary and Outlook

- Color Evaporation Model and NRQCD Model of J/ψ production correspond to two different approximations of the QCD factorized production formula.

- Fermilab data on J/ψ polarization could be understood in terms of QCD calculations.

- In terms of our new suppression mechanism, all observed data on J/ψ suppression in pA and AA collisions are consistent with our calculations, except the five NA50 data points (the "second drop") at the highest E_T bins.

- Suppression in our mechanism is not limited by any "upper" limit on the absorption cross section.

- Instead, it depends on the functional form of the transition probability from a pre-J/ψ partonic state to a physical J/ψ meson.

- Our suppression mechanism predicts \sqrt{S} dependence on J/ψ suppression from the fixed target energies to collider energies.

- Multiple scattering induce radiations from the pre-J/ψ $c\bar{c}$ states, and lead to stronger suppression at large x_F.