Systematic Study of \(Au - Au \) Collisions at the AGS by Experiment 917

B. Holzman\(^a\) for the E917 Collaboration

\(^a\)Univ. of Illinois, Chicago

Presented by: Richard Seto

Abstract

Experiment E917 at the AGS has assembled a systematic set of measurements from \(Au - Au \) collisions in the AGS energy regime. Studies of stopping and strangeness production have been made as a function of centrality at \(\sqrt{s_{NN}} = 3.8, 4.2, \) and 4.8 A-GeV using single-particle spectra of \(\pi, K, p, \) and \(\Lambda. \) At \(\sqrt{s_{NN}} = 4.8 \) A-GeV, these studies are complemented by measurements of strangeness and antibaryon production using \(\phi, \bar{\Lambda} \) and \(\bar{p} \) spectra. Baryonic directed flow has been measured at \(\sqrt{s_{NN}} = 4.2 \) and 4.8 A-GeV. Three-dimensional Hanbury-Brown Twiss source radii as a function of the reaction plane have been measured at \(\sqrt{s_{NN}} = 4.8 \) A-GeV. Comparisons within this data set, to other measurements from heavy-ion collisions both at this collision energy and at others, and to measurements from \(p - p \) collisions will be shown.