Evolution of Proto-Neutron Stars with Quark Matter

Jose A. Pons Andrew W. Steiner M. Prakash
James M. Lattimer

Department of Physics and Astronomy, SUNY at Stony Brook

Presented by: Jose A. Pons

Abstract

We study the evolution of proto-neutron stars containing a quark-hadron mixed phase. The maximum mass for cold, neutrino-free matter is then less than that for hot neutrino-rich matter. A with a baryonic mass exceeding the former is therefore metastable: it will collapse to a black hole during the Kelvin-Helmholtz stage. Its neutrino signal will stop suddenly, generally at a level above background in current detectors for a galactic supernova. The signal of a stable star, conversely, exponentially decays and disappears into the background. We compare the signals from quark-bearing stars to those containing hyperons (ApJ, 513, (1999), 780) or a kaon condensate (astro-ph/0008389).