IA64 as disk server (WAN / LAN)

Andreas Hirstius, CERN openlab

Andras Horvath, CERN IT-ADC

How to deal with the LHC datarate?

- Distribute the work ("Grid")
 - The data will be transferred to Tier 1 centers
 - Large regional centers (e.g. FNAL, BNL, IN2P3 ...)
 - Most physics analysis is done at the Tier 1 centers
 - At the moment 12 Tier 1 centers worldwide
 - The closest one is ~100km away
 - The one farthest away is in Japan
 - Continuous datarates of ~2–7Gbit/s per site
 - Total datarate (estim. Sept. 2004): ~55Gbit/s
 - 10Gb link to each Tier 1 center foreseen

Andreas Hirstius, Andras Horvath

(Disk)-Storage Subsystem tests

- Used in the "Robust Data Transfer Challenge"
 - Goal: reliable high speed data paths to Tier 1 centers
 - Currently one 10Gb lightpath to Europe + one to US
 - First goals for datarates (mid 2005)
 - 500MB/s disk-to-disk sustained over 2 weeks to one site
 - Max. possible data rate disk-to-disk sustained to all sites
 - N * 100MB/s "tape-to-tape"
 - Other objectives
 - Improving stability & reliability of the used software

Andreas Hirstius, Andras Horvath

Network attachement

- Two possibilities:
 - Aggregation of 1Gb connections (current model)
 - Simple and straightforward setup
 - Large Number of machines necessary
 - Max. single stream transfer rate limited to 1Gb

(will be a problem when tapes can deliver >100MB/s ... next year??)

- Directly attached 10Gb
 - Very high transfer rates possible
 - Smaller number of machines necessary
 - Expensive hardware

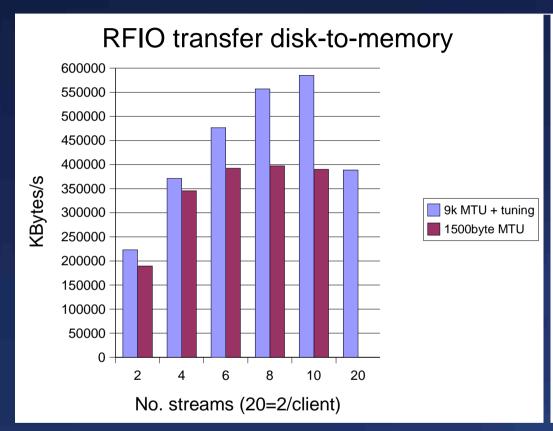
10Gb LANs

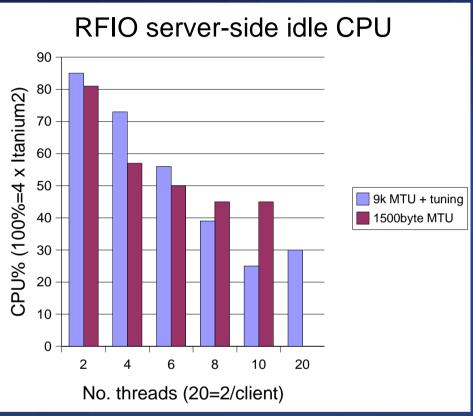
- Several 10Gb NICs from Intel (SR and LR)
 - Stress testing Enterasys X-Series (and other network equipment)
 - Back-to-Back performance tests
 - Unfortunately no adequate 10GE infrastructure (yet)
- InfiniBand
 - Awaiting 96-port switch from Voltaire
 - Very low CPU overhead at linespeed
 - Home grown protocol (RFIO) is ported to IB
 - Still expensive, but costs dropping fast

Andreas Hirstius, Andras Horvath

Test setup at CERN

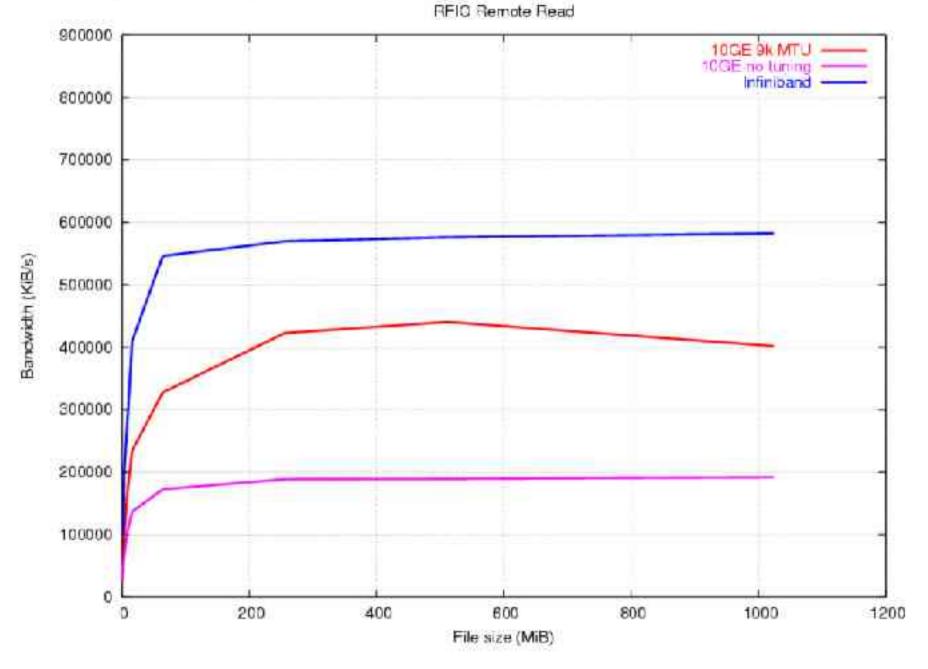
- ten 2-way@1.5Ghz HP rx2600 Itanium2 clients (LAN tests)
- one 4-way@1.5Ghz HP rx4640 Itanium2 disk server
 - 16GB RAM
 - 24 SATA disks and two 3ware 9500 controllers
 - Scientific Linux CERN with vanilla 2.6.9-rc1 kernel
 - Software RAID0 over hardware RAID0, XFS
- Intel 10GE and GE adapters / (Voltaire IB HCAs)
- Foundry MG8 10GE switch / (Voltaire ISR9600)
- RFIO, home-grown transfer protocol, part of CASTOR HSM
 - Infiniband port by Dr Ulrich Schwickerath @ FZK




Disk ⇒ Memory results (using iperf)

- Internal data rates (ms+ss)
 - ~770MB/s read
 - ~350MB/s write
- 10Gb back-to-back (ms+ss)
 - ~710MB/s read (NIC is the limitation)
 - ~350MB/s write
- 10Gb to California (ss)
 - ~660MB/s read :-)) (~1300GB in 2000s)

Disk ⇒ Memory results (using rfio)



Outlook (not that Outlook. Just future development forecast)

- Performance improvements for RFIO
 - Analyze differences to iperf
 - e.g. use sendfile()
- Infiniband tests (have started, new driver for 2.6.9 kernel available)

Already reported at Spring HEPix 2004 (cached mem to /dev/null):

