
The CDF DCache System

A Large Production DCache System at Fermilab

Robert D. Kennedy
Fermilab Computing Division

CDF Data Handling Group Co-leader and
SamGrid Project Technical Co-leader

(kennedy /at\ FNAL /dot\ GOV)

v1.0
BNL Technology Meeting

19 April 2004

Motivation

CDF dCache (http://cdfdca.fnal.gov) is the largest
production dCache system at Fermilab. Today:

It consists of 160 TB commodity IDE disk, backed by
~1 PB data center tape (2 PB capacity robot).

It serves 1600 clients at once. (computing facility size)

Most clients on-site, read by-record (dcap protocol).

Some clients off-site, copy by-file (gridftp, other ftps).

10-50 TB/day moved to clients, as driven by demand.

Operates with >99.9% cache hit rate, when no data
turn-over due to wholesale reprocessing (cache flush).

Talk Outline

Introduction and Context

dCache Features (used in the CDF dCache System).

CDF Data Handling and dCache Configuration.

Integrator & Client Experiences, Some Plots.

Some Open Issues and Future CDF dCache Work.

Conclusion.

This talk: broad overview, so short on some details.

CDF Data Handling Context

Diverse scientific program: small data sets (< 1 TB)
and very large ones (> 25 TB) used in physics analyses.

All physics data at CDF is stored in ROOT files.

CDF Enstore: dual STK Powderhorn 9310s with 2 PB
capacity (STK 9940-B), ~1 PB tape media, 0.83 PB used

Early 2002: CDF DH used in-house cache system (DIM)

ran on large SGI SMP with attached disk
lost in-house support personnel
not easily scaled to large loads
not easily adapted to distributed caching

Dcache already at Fermilab. CDF selected, adopted it.

DCache Introduction

DCache: Network-accessible distributed disk cache as
rate-adapting front-end to a Mass Storage System.

Created/developed at DESY (Patrick Fuhrmann et al)
Co-developed/maintained by DESY and Fermilab
Original Mission: on-site access, reliable networks, O(1 TB)/day read
by clients was scale of use, used PNFS as a file “catalog”.

CDF dCache System: consists of several components
Service base s/w packaged from CVS by Jon Bakken (FNAL CD)
Added to that base: FNAL ops, monitor, auth(krb5) enhancements
Clients use TDCacheFile class in ROOT package as interface.
Platforms developed by CDF, FNAL CD. CDF buys equipment.

Not in this talk: though interest at Fermilab and CDF
“Resilient” dCache: no MSS backing, files replicated
DCache SRM interface: prototype integrated at CDF, not used.
Remote access details, kerberos authentication details, ...
CMS dCache RPM packages: not for this system...

Basic DCache Interaction

CDF DCache Client Interface

DCache dcap client interface library
POSIX I/O semantics supported
URL-like file specs avoids PNFS mount on all clients
Client lib reaction if file server goes down: Resumes
transfers in mid-stream with a live file server.

ROOT TDCacheFile and ROOT Plug-ins
ROOT TFile semantics with dcap implementation
Plug-in configured in centrally in CDF s/w for all
Selects TDCacheFile at run-time if “dcache://” file
Works for all ROOT data files, including ntuples.

CDF Infrastructure: existing programs easily extended
% ObjectLister /local-data-dir/file.dat
% ObjectLister dcache://doorhostip:doorport/pnfs/cdf/dir/file.dat

DCache Feature: Affinity

File family (FF) Affinity: At CDF, all and only files with
FF matching a pattern are treated by a group of pools.

File Family = Storage Aggregation key in Enstore
CDF dataset id (mostly) used as file's FF value.
Used to create “sub-caches”, associated with group
of datasets, each with different service levels.

IP Address Affinity: improve locality of cache used by
clients. CDF to use when computing more distributed.

IP Address Affinity: work-around the lack of support
for passing MSS-specific options (priorities) through
dCache copy program “dccp”. Couple this with -
define different write-to-tape priorities for pools.

dCache Feature: Pool-to-Pool Copy

Read-to-Read: Load balancing (replicate file in demand)

Read-to-Read: Sub-cache reconfig w/o tape access

Write-to-Read: Tape-less Datapath

CDF Data Handling FY04 Baseline

Sub-Caches and Service Levels

Golden: “Semi-static”. Under-subscribed, so once
loaded, dataset always in cache. DH checks/updates.

RawData (2): Cycling datasets. Separated out to
prevent flushing general cache due to access pattern.
BigBuffer: Very large datasets. Manually pre-loaded.
Clients coordinate what is used in cache “this week”.
LittleBuffer: Depricated datasets. Intentionally over-
subscribed to allow but limit access to these datasets.

General: Everything else. Lifetime ~ 7 days since LRU.

Write caches: GeneralWrite. Future - RawDataOutput,
ReconFarmOutput, LocaleSpecificOutput, and so on.

System Hardware

Administrative nodes: Dell PowerServer 2650s (Linux)
(1) Primary Service node (cdfdca.fnal.gov). Hosts
PNFS interface (SPoF), monitor web page, ftp doors
(3) Dcap Door hosts. 10 doors per host, 200 logins
max per door (based on past experience).
(1) Monitor node (offloads CPU tasks from primary)

File Servers: Various Vendors (Linux) ~160 TB space
(65) file servers hosting 186 read, 9 write pools, 3
pools each. 1.8 -> 5 TB models. Only use Western
Digital IDE disks (vendor/WD support well proven!)
Dual processors, multiple RAID-5 controllers, hot-
swappable disk canisters, GB ethernet. S/w RAID 0.

Small test system: 1 admin node, a few file servers

Integrator, Client Experiences

Integrators: Easy to integrate. Bit-errors, PNFS issues.
Easy: integrate into CDF Infrastructure, Framework.
Easy: train users to adapt existing analyses to use.
Can adapt features to achieve system design.
IDE disks: bit-error rate requires file CRC checks.
Check each file written (direct I/O), rescan weekly.
Dcap URL-like protocol stresses PNFS performance.

Users: Easy to adopt, harder to track requests.
One line in a job control file to switch cache used.
So easy, users can forget DCache's limits at 5PM Fri.
Hard to track tape restore requests, to predict when
files will arrive in cache. Users have to get used to
“waiting to see what happens” (contrast to Enstore).

Data Movement Per Day

May
2003

July
2003

Oct
2003

Jan
2004

Apr
2004

Bytes
Read
From
cache

Bytes
Restored
From
Tape

50 TB

30 TB

10 TB

10 TB

Typical Rate Now
15-45 TB/day

CDF Dcache in Production

Production Client Load
>48 TB in 1 day

Test Load
54 TB in 1 day

Cache Hit/Miss Ratio

Client open()s:
Green: File is in cache
Red: File is not in cache

1 E6

1 E4

1 E2

1 E0

Memory Exhaustion
Service Failure

Plot Redefined
“upgrade”

May
2003

July
2003

Oct
2003

Jan
2004

Apr
2004

LOG
SCALE

Typical Hit/(Hit+Miss) > 99.9%

Open Issues

Technical Issues: visible effect on service reliability
Memory exhaustion in java run-time if “too many”
O(10,000) files requested to be restored from tape.
Files get into inconsistent state very infrequently.
They are in cache on disk, but cannot be opened.
Clients simply hang “forever” in open()... ouch.
Cost model: re-tune as cache expands to allow load
balancing pool-to-pool without the “copy craze”.
PNFS is an overall performance bottleneck.
In fairness, this is at >10X original design scale.

Admin Issues: requires FTE expert for large system
All above require expert intervention and/or study.
Lacks central configuration, monitoring services.
Client mental model and monitoring info interface.

Conclusion

Future CDF DCache work:
Complete Tapeless Data Path implementation
Use production SRM interface to DCache by default
Continue scaling system, performance, re-tuning

Conclusion: A Great Success!
Has enabled CDF's Physics program to flourish.
Adjustable so far to meet scale challenge.
Adapted to by users (easily) and integrators.
But still has some challenges to meet...

CDF Ideal: DCache with global data access resource
management in a Grid-ish DH Framework: SamGrid.

Links to Related Information

DCache Project Links
NEW - http://www.dcache.org/
OLD - http://www-dcache.desy.de/summaryIndex.html

CDF Data Handling Links: DH, DCache, and Enstore
http://www-cdf.fnal.gov/upgrades/computing/dh/cdfdh.html
http://cdfdca.fnal.gov
http://www-cdfen.fnal.gov/enstore/enstore_system.html

CHEP 2003 Talk on CDF Data Handling and DCache
“The CDF Run II Data Handling Design” by Robert D. Kennedy
http://www.slac.stanford.edu/econf/C0303241/proc/pres/398.PDF

Fermilab Data Storage and Handling Link
http://computing.fnal.gov/cd/physics/datastorage.html

