STAR Scheduler

Gabriele Carcassi
STAR Collaboration

What Is the STAR scheduler?

e Resource Broker

— receives job requests from the user and
decides how to assign them to the resources
available

* Wrapper on evolving technologies

— by and by that GRID middleware fit for STAR
needs is available is integrated in the
scheduler flexible architecture

Scheduler benefits

e Enables the Distributed Disk framework

— Data files are distributed on the local disk of
each node of the farm

— The job requiring a given files is dispatched
where the file can be found
* Interfacing with STAR file catalog

— User specify job input through a
metadata/catalog query (ex. Gold-Gold at 200
GeV, Fullfield, minbias, ...)

— File catalog implementation is modular

Scheduler benefits

e User interface: description and specification
— Well defined user interface and job model

— Abstract description allows us to embed in the
scheduler the logic on how to use resources

— Allows us to experiment and migrate to other tools
with minimal impact for the user (for job submission)

— Makes it clearer for other groups collaborating with us
to understand our needs

 Extensible architecture

Technologies used

Scheduler is written in Java
Job description language is an XML file

Current Iimplementation uses
— LSF for job submission
— STAR catalog as the file catalog

Experimenting with Condor-g for GRID
submission

How does it work?

Job description
test.xml

Query/Wildcard
resolution

sched1043250413862_0.list

<?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500">

<command>root4star -q -b
rootMacros/numberOfEventsList. C\(\"$FI
LELIST\"\)</command>

<stdout
URL="file:/star/u/carcassi/scheduler/out/$
JOBID.out" />

<input
URL="catalog:star.bnl.gov?production=P
02gd,filetype=dag_reco_mudst"
preferStorage="local" nFiles="all"/>

<output fromScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out
/">
</job>

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...

/star/data09/reco/productionCentral/
/star/data09/reco/productionCentral/
/star/data09/reco/productionCentral/
/star/data09/reco/productionCentral/

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...

/star/data09/reco/productionCentral/
/star/data09/reco/productionCentral/

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...

sched1043250413862_1.list

/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...
/star/data09/reco/productionCentral/FullFie...

sched1043250413862_2.list

How does i1t work?

Job description
test.xml

<?xml version="1.0" encoding="utf-8" ?>
<job maxFilesPerProcess="500">

<command>root4star -q -b
rootMacros/numberOfEventsList. C\(\"$FI
LELIST\"\)</command>

<stdout
URL="file:/star/u/carcassi/scheduler/out/$
JOBID.out" />

<input
URL="catalog:star.bnl.gov?production=P
02gd,filetype=dag_reco_mudst"
preferStorage="local" nFiles="all"/>

<output fromScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out
/">
</job>

I

=

L

sched1043250413862_0.csh

#1/bin/csh

Script generated at Wed Jan 22 ...
bsub -q star_cas_dd -o /star/u/carca...

Output files
|

sched1043250413862_ 1.csh

sched1043250413862_2.csh

Output files

Output files

= I

Distributed disk

* Motives
— Scalability: NFS requires more work to scale
— Performance: reading/writing on local disk is faster

— Avalilability: every computer has local disk, not every computer
has distributed disk

e Current model
— Files are distributed by hand (Data carousel) according to user
needs
— File catalog is updated during distribution

— Scheduler queries the file catalog and divides the job according
to the distribution

e Future model
— Dynamic distribution

File catalog integration

e Enables distributed disk

— If not present, users would have to know

where the files are distributed on which
machines

o Allows users to specify their input
according to the metadata

 On small number of files requests, the

scheduler can choose which files are more
available

File catalog integration

* Implemented through an interface (pure
abstract class

— The query itself is an opague string passed
directly to the file catalog

— Other tags tell the scheduler how to extract
the desired group
* single copy or all copies of the same files
e prefer files on NFS or local disk
* number of files requires

User Interface

« Job description

—an XML and it’s tag used to describe to the
scheduler which command is to be dispatched
and on which input files

* Job specification

— a set of simple rules that define how the user
job Is supposed to behave

The Job description

XML file with the description of our request

<?xm version="1.0" encodi ng="utf-8" ?>
<j ob maxFi | esPer Process="500">
<command>r oot4star -q -b
r oot Macr os/ nunber Of Event sLi st. C\ (\"$FI LELI ST\ "\) </ command>
<st dout
URL="fil e:/star/ul/carcassi/schedul er/out/$JOBID. out"” />
<i nput URL="catal og: star. bnl.gov?
col I'i si on=dAu200, trgset upnane=m nbi as, fil etype=MC reco_MiDst "
preferStorage="local" nFiles="all"/>
<out put frontScratch="*.root"
toURL="file:/star/u/carcassi/scheduler/out/" />
</ ob>

Job specification

 The scheduler prepares some
environment variables to communicate the
Job Its decision about job splitting

— $FILELIST, SINPUTFILECOUNT and
$INPUTFILEXx contain information about the
iInput files assigned to the job

— $SCRATCH is a local directory available to
the job to put it's output for later retrieval

Job specification

e The other main requirement is that the
output of the different processes won't
clash one another

— One can use $JOBID to create filenames that
are unique for each process

STAR Scheduling archltecture

Scheduler / Resource broker
UIDL :> Joblnitializer 5

““““““““

- Fy—— T URile
Ganglia <::> Monitoring: | catalog <:::> _ Perl

MDS | ¥V W | interface | !\ Interface

i N] . Abstract
LSF : i A :
<::=. >i Dispatcher S " component

Job Initializer

o Parses the xml job request

 Checks the request to see If it Is valid

— Checks for elements outside specification (typically
errors)

— Checks for consistency (existence of input files on
disk, ...)

— Checks for requirements (require the output file, ...)

* Creates the Java objects representing the
request (JobRequest)

Job Initializer

e Current implementation

— Strict parser: any keyword outside the
specification stops the process

— Checks for the existence of the stdin file and
the stdout directory

— Forces the stdout to prevent side effects (such
as LSF would accidentally send the output by
mail)

Policy

* The core of resource brokering:

— From one request, creates a series of
orocesses to fulfill that request

— Processes are created according to farm
administrator’s decisions

— The policy may query the file catalog, the
gueues or other middleware to make an
optimal decision (ex. MDS, Ganglia, ...)

Policy

« We anticipate a lot of the work in finding
an optimal policy
e Policy Is easily changeable, to allow the

administrator to change the behavior of
the system

Policy

e Current policy

— Resolves the queries and the wildcards to
form a single file list

— Divide the list into several sub-lists, according
to where the input files are located and the
maximum number of files set per process

— Creates one process for every file list.

Dispatcher

 From the abstract process description,
creates everything that i1s needed to
dispatch the jobs
— Talks to the underlying gueue system

— Takes care of creating the script that will be
executed: csh based (widely supported)

— Creates environment variables and the file list

Dispatcher

e Current implementation:

— creates file list and script in the directory
where the job was submitted from

— creates environment variables containing the
job id, the list of files and all the files in the list,
assigns a scratch directory.

— creates a command line for LSF
— submits job to LSF

Conclusion

The tool is available and working

— In production since September 2002 and slowly acquiring
acceptance (difficult to get people to try, but once they try it they
like it)

Allows the use of local disks
Architecture is open to allow changes

— Different policies
— Catalog implementation (MAGDA, RLS, GDMP, ... ?)
— Dispatcher implementation (Condor, Condor-g — Globus, ...)

We are preparing an implementation that uses Condor-g
and allows us to dispatch jobs to the GRID

