
Web Services
A Three Part Tutorial

Part I
Overview and XML

Why Study Web Services?

� Because we are really interested in Grid Services!

� The OGSI specification says that a grid service is
merely a web service that conforms to specific
interface and behavior conventions that define how
clients interact with that service.

� In OO-speak – a Grid Service “is-a” Web Service.

� There is much more $$$ wrapped up in Web
Services and therefore lots of tools, programmers,
experience, books, magazines, etc. - Great
leverage!

Three Part Tutorial

� Web services tend to be complicated – partly due
to the clever re-use of existing technologies, so
we'll tackle it in bite sized chunks

� Overview and XML

� What the paradigm is and the underpinning of everything

� Data Transfer

� Too many ways to simply move data. Why?

� Tomcat as one implementation

� Creating and finding web services

� Directories and such.

Language and O/S Warning

� Web Services are language neutral.

� Implementations of various components exist in Java,
C#, Perl, Python (Jython), C++, etc.

� However, my bias is toward Java and all
examples will be presented using Java

� There are ways to use .Net or EJB and Web
Services together – however, I have no interest in
.Net and don't know enough about EJB so I can't
provide much useful information.

Web Services

� Definition 1

� A web service is any service that is available over the
internet, uses a standardized XML messaging system,
and is not tied to any one operating system or
programming language.

� Definition 2

� A web service is a piece of business logic, located
somewhere on the internet, that is accessible through
standard-based Internet protocols such as HTTP or
SMTP.

Best Definition I Found

	 A web service is a software system

 identified by a URI

 with public interfaces and bindings are defined and
described using XML

 whose definition can be discovered by other software
systems.

 and these other software systems may then interact
with the Web service in a manner prescribed by its
definition, using XML-based messages conveyed by
Internet Protocols.

Characteristics of Web Services
XML

� XML based – everything is XML, from the data
transferred, to the service description to the
“make” files used to create the programs that
implement the service.

� You will probably find that you use XML even
outside of the Web Services interface simply because
it is quite useful!

� These slides are created in StarOffice and the file they
are stored in is (of course) XML based.

Characteristics of Web Services
Loosely Coupled

 There is a service and a client.

� Location of the client and service may be variable

� The language they were written in is un-important

� The service need not exist when the client is written

� The service may change between invocations

 More manageable and simpler integration albeit
slower.

 Separate in your mind, the client and server. Use
different programmers. Use CRC types of design.

Characteristics of Web Services
Coarse Grained

� Web Services should do a lot because the
connectivity is fairly expensive

� Computing a sin of an angle is probably a bad idea.

� Asking the current load level of a computer is
probably a bad idea

� Asking for the optimal way to access a resource given
a complex environment is a better candidate.

� This is not Corba and it isn't RMI. You should see
services rather than atomic methods.

Characteristics of Web Services
Synchronous or Asynchronous

� This should be part of your design

� With the coarse grained and loosely coupled nature of
the system, some services may take a long time to
respond – one should not sit waiting for a response

� It really requires the designer to think bigger than
the immediate problem and in a fashion different
from “ordinary” programming.

� This is another good opportunity for multiple
person design sessions

Characteristics of Web Services
Support for Document Exchange

� Since

� XML is the mode of communication between clients
and servers

� XML can represent simple as well as complex data

� All major office automation systems will be in XML
within the next year

� Web Services provides a means of sharing large
documents without the need to know what is
inside of them.

Characteristics of Web Services
Self Describing

� If a system is loosely coupled, then there has to be
a way for a client to find a service.

� If we rely upon human documentation – we are lost

� There has to be a way to automate the extraction of
the essence of a service from the code that
implements it.

� There has to be an automated means of reading the
essence of a service and then take advantage of it.

Characteristics of Web Services
Discoverable

� Again – to support the loosely coupled nature of
web services, you cannot require that a program
knows where the service is nor the exact means
by which one invokes it!

� The use of the self-describing nature of web
services with some simple directories
accomplishes this.

Characteristics of Web Services
Support for RPC

� You could have a web service architecture
without this. (e.g. mail, web pages, etc.) where the
user defines the handshaking and the protocol for
the client's use of the service

� Or, you can simply make a function call and be
done with it.

 Web services permits both and in fact this is the
typical way of accessing EJB or .Net

Summary

! Programming web services is not the same type of
programming you usually do

" Utmost degree of flexibility

Listening to Client designers (and vice-versa)

$ Understand that clients will change over time as will
services

% Design using interfaces

& Design using Design Patters (more on this later!)

Some Terminology

' XML – a data format (think HTML)

(SOAP – a standard way to wrap up XML with an
envelope etc. (Think mail and attachments)

) WSDL (Web Services Description Language)

* Think about the best program library documentation
you ever saw – one that permitted you to use the
methods almost effortlessly.

+ Universal Description, Discovery and Integration
(UDDI)

, Think of a dynamic name service on steroids.

A Simple Architecture Example

Application
1 Accesses Registry
2 Wraps in SOAP
3 Sends HTTP req.
4 Gets HTTP resp.

UDDI
Registry

HTTP request Web Service
0 register
1 Process Soap
2 Perform Service
 (may be complex!)
3 Send Response

HTTP response

WSDL

Real Example

- ARM data collection.

. Meta data is produced for all of the data –
commentary, equipment reports, etc.

/ Meta data is filtered for duplicates, stored in the
database, and transmitted to interested parties

0 Meta data is then attached to all data that is
transmitted and is used to form a “color map”

1 Experience shows that databases change and
collection details change. Needs a clean break to
permit independent development.

A Real Example

Data Assessment Pgm.
1 Accesses Registry
2 Wraps in SOAP
3 Sends HTTP req.
4 Gets HTTP resp.

UDDI
Registry

HTTP request Web Service
0 register
1 Process Soap
2 remove duplicates,
insert to database,
alert others.
3 Send Response

HTTP response

WSDL

First Step – Why XML?

2 The concept of “well formedness”

3 How many examples do you need of programs going
out of control due to a missing “,” (or something) in
its data file.

4 The concept of “validity”

5 There is the idea that every program is a compiler,
accepting as valid “sentences” properly structured
input and (oh if it were only so!) rejecting improperly
structured input. XML permits validity (syntax)
checks

6 These two facts alone make XML worth while
independent of Web Services!

A Sample XML
<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : DesignPatterns.xml
 Created on : September 7, 2003, 12:52 PM
 Author : Dave Stampf
 Description:
 Purpose of the document follows.
-->

<book isbn="0-201-633511-2">
 <title>Design Patterns</title>
 <subtitle>Elements of Reusable Object-Oriented Software</subtitle>
 <author>Eric Gamma</author>
 <author>Richard Helm</author>
 <author>Ralph Johnson</author>
 <author>John Vlissides</author>
 <publisher>Addison-Wesley Publishing Company</publisher>
 <copyright>1995</copyright>
 <hardcover />

</book>

Notes on the Simple XML

7 It is wordy – the better to be read by humans and
the machines don't mind.

8 Much more strict than html

9 one “root” (otherwise, not well formed)

: case matters

; attributes must be quoted

< all open elements need to be closed

= No formatting information – just info info (see
XSLT!)

> Well-formedness

Minutia

? You can't use &, <, >, ', “

@ &

A <

B >

C etc.

D Or, use CDATA sections

E <![CDATA[<anything your heart desires]]>

But...

F How to insist that a title be there?

G How to indicate that a subtitle is optional?

H How to indicate that the <hardcover> tag must be
empty?

I How to indicate that there must be 1 or more
authors?

J How to indicate that the isbn number have the
right form?

Some Answers

K All but the last can be handled with a “DTD”

L Note – the format of the DTD was a blunder! It
should have been in XML.

M DTD is very limited – looks like a quick hack –
can't count, has trouble with namespaces.

N But, it is universally recognized while the more
robust versions are slowly gaining acceptance.

Simple XML with DTD
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE book SYSTEM "Book.dtd">
<!--
 Document : DesignPatterns.xml
 Created on : September 7, 2003, 12:52 PM
 Author : Dave Stampf
 Description:
 Purpose of the document follows.
-->

<book isbn="0-201-633511-2">
 <title>Design Patterns</title>
 <subtitle>Elements of Reusable Object-Oriented Software</subtitle>
 <author>Eric Gamma</author>
 <author>Richard Helm</author>
 <author>Ralph Johnson</author>
 <author>John Vlissides</author>
 <publisher>Addison-Wesley Publishing Company</publisher>
 <copyright>1995</copyright>
 <hardcover />

</book>

The Associated DTD
<?xml version='1.0' encoding='UTF-8'?>

<!--
 An example how to use this DTD from your XML document:

 <?xml version="1.0"?>

 <!DOCTYPE book SYSTEM "Book.dtd">

 <book>
 ...
 </book>
-->

<!ELEMENT book (title, subtitle?, author+, publisher, copyright, hardcover?) >
<!ATTLIST book
 isbn CDATA #IMPLIED
 >

<!ELEMENT title (#PCDATA)>

<!ELEMENT subtitle (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT copyright (#PCDATA)>

<!ELEMENT hardcover EMPTY>

Tools

O What is so remarkable about having a “data
language” is that you can develop tools similar to
those that front end compilers to work with the
data.

P Netbeans is one of many

Name Collisions

Q I'm probably the 1,000,000th person to think of
this book example, and many have probably used
tags like book, title, etc. before.

R Also, “title” is overloaded with html

S So, “namespaces” are added (in a rather bizarre
fashion)

T Note – this is a young technology – support for
namespaces is NOT universal yet!!!

How to Work with XML

U If the XML format existed (like CSV) without
good libraries to verify, validate, input,
manipulate and output, it would be of little value.

V One benefit of XML is that it is accompanied by tons
of support programs and libraries that

W There are 2 standard models for interacting with
XML (and a number of nonstandard ones as well)

X Simple API for XML (SAX)

Y Document Object Model (DOM)

Simple API for XML

Z Scans the document, top to bottom and “calls-
back” a function for everything interesting

[start of document

\ start of tag

] characters

^ end of tag

_ end of document

` etc.

a Only useful for infinitely long documents or other
special purposes.

How SAX Sees XML
<?xml version="1.0" encoding="UTF-8"?>

<!--
 Document : DesignPatterns.xml
 Created on : September 7, 2003, 12:52 PM
 Author : Dave Stampf
 Description:
 Purpose of the document follows.
-->
[startDocument]
[startElement]
<book isbn="0-201-633511-2">
[startElement]
 <title>[characters]Design Patterns[endElement]</title>[endElement]
[startElement]
 <subtitle>[characters]Elements of Reusable Object-Oriented Software[endElement]</subtitle>
[startElement]
 <author>[characters]Eric Gamma[endElement]</author>
[startElement]
 <author>[characters]Richard Helm[endElement]</author>

etc.

DOM

b DOM is based on the fact that an XML file can be
viewed as a “tree”.

c Most implementations of DOM use SAX to build
the tree (smart design!)

d When you use DOM to process and XML file,
you are returned a “Document” object and you are
free to walk the tree yourself.

The Tree as Seen by DOM

Document

authorauthorsubtitletitle

BookDoc type

...

DocumentDocumentDocument

Text TextTextText

As an OOProgrammer...

e Every oval “is-a” Node

f Document Node “is-a” Node

g Element Node (e.g. author) “is-a” Node

h Text Node “is-a” Node

i Nodes have Nodelists (seqences of Nodes)
beneath them.

j Nodes also have “values”

k Basically – everything you should have learned in
Data Structures 1!

Time for some Programs!

l Lets set some tasks

m Read in a Book xml file

n Validate it

o Extract the title, main author, publisher, and
copyright date

p output to standard output

Read and Validate

q There is no “magic” XML parser. Many
companies and students write their own and either
given them away or sell them. Some parsers come
with other components (Tomcat)

r In addition, the XML spec says nothing about
how one gets (instantiates) a parser

s Two major techniques

t Hardwired

u Factory generated – we'll work with this one

JAXP – the Acronyms Mount

v JAXP – Java API for XML Processing specifies
how to get a parser and how the parser behaves.

w It provides a default parser

x If you have a better parser, you can still gain
access to it through the means that JAXP provides
and when a better one appears, swapping it in is a
configuration issue, not a compiler issue

y Very good use of “Interfaces”

Read and Validate (and explain!)
import java.io.*;
import javax.xml.parsers.*;
import org.xml.sax.InputSource;
import org.w3c.dom.*;

public class Book {

 public Book(Reader r) throws Exception {
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 dbf.setValidating(true);
 DocumentBuilder db = dbf.newDocumentBuilder();
 System.out.println(db.getClass());
 InputSource is = new InputSource(r);

 Document doc = db.parse(is);
 process(doc);
 }

 private void process(Document doc) {
 System.out.println("Have the document");
 }

 public static void main(String[] args) throws Exception{
 Reader r = new FileReader("C:/WebServicesTutorial/DesignPatternsWithDTD.xml");
 Book b = new Book(r);
 }

Factory Pattern

z JAXP uses the Factory Pattern to produce a
parsers (document builder). This permits the parse
actual parser to be determined at run time.

{ use the default

| run with the definition
javax.xml.parsers.DocumentBuilderFactory=org.apac
he.xerces.jaxp.DocumentBuilderFactoryImpl

} or having a configuration file...

~ The DocumentBuilderFactory is a Factory that
produces “parsers” or DocumentBuilders

� The returned parser understands input sources

Messy?

� While the code is messy, switching parses

� does not require any recompilation

� can be done by applications asynchronously

� can be done on the fly as well

� The factory pattern is used many times in the Java
library to handle varying databases and window
systems as well. (Its worth adding to your bag of
tricks.)

So – Extracting the Data...
 private void process(Document doc) {
 System.out.println("Have the document");
 Node book = doc.getDocumentElement();

 // find the title, first author, publisher and copyright date

 String title=null, author = null, pub=null, copy=null;
 NodeList nl = book.getChildNodes();
 for (int i = 0; i < nl.getLength(); i++) {
 Node n = nl.item(i);
 String s = n.getNodeName();
 if (s.equals("title")) {
 title = n.getFirstChild().getNodeValue();
 } else if (s.equals("author")) {
 if (author == null) {
 author = n.getFirstChild().getNodeValue();
 } else if (! author.endsWith(", et al")) {
 author += ", et al";
 }
 } else if (s.equals("publisher")) {
 pub = n.getFirstChild().getNodeValue();
 } else if (s.equals("copyright")) {
 copy = n.getFirstChild().getNodeValue();
 }
 }
 System.out.println(title + " by " + author + " published by " + pub + " in " + copy);
 }

Method Patterns

� In the tree, everything is a Node

� Nodes understand:

� getNodeName – a String

� getNodeValue – a String

� getNodeChildren – a List of Nodes

� and other “editing” methods

� append, remove, replace

A More Typical Application...

� This was a bit too special purpose

� More typically, you only know that you will find
nodes, but you don't know the real type.

� It is easy to write a tree walking program. Everything
in the tree is a Node and all nodes have Children.

� This was also a bit “un-Java” like. If you are
buying into Java 100%, you should invest some
time with JDOM. If you are multi-lingual, you
should probably stick with DOM.

Modify an XML and Output

� Lets modify the XML by removing all but the
first author and adding “et al” if needed.

Shorten the XML

�� ��� � �� � � �� � � �� � � � �� �� � � ¡ � � � � ¢ � £¤� �¥ � ¦¨§ � � � � � � ¡ ©

ª¬« � �� ®­ � � � ­ � � � ¡ � ¯ ¡ �° ± �� � � £� � �� � � ¡ �° ¢�²

³ � � � ´ � � µ ¶ � �� ­ ·� �� �� � � ¡ � ¦ ¯� � ¡ � � ¢²

� ¡ � ¡ � ¸ � � £ � � � ¶ ¹²

³ � � � º � � � ¡ ¯ ¶ ´ � � µ ­ ·� � » £ � ¯� ³ �� � � � ¢²

¼ � � � � ¡ � � ¶ ¹² � ½ ¡ ¯ ­ ·� � º� ¡ · � £ � ¢² �¿¾ ¾ ¢ ©

³ �� � ¡ ¶ ¡ ¯ ­ � �� � � ¢�²

ª � � � ¡ · � ¶ ¡ ­ ·� � ³ � � � ³ � � � ¢ ²

� ¼ � � ­ � À � � ¯ � � ° � � � £ � � ° ¢ ¢ ©

¡ � ¸ � � £ � � �¾ ¾ ²

� ¼ � ¡ � ¸ � � £ � � � ¶ ¶ Á ¢ � � ¡ � � ¡ �� ²

� ¯ �� � ¼ � ¡ � ¸ � � £ � � � ¶ ¶ Â ¢ ©

¡ ­ ·� � Ã � � � � » £ � ¯� � ¢ ­ �� � ³ � � � Ä � ¯ �� �° � � � ¯° ¢�²

Å � ¯ �� ©

´ � � µ ­ � � �� � » £ � ¯ � � ¡ ¢�²

Å

Å

Å
Æ Æ � µ Ç � � � � � � ¡� ¥ ÈÉ º Ç « � � Ê � � �� � ¡ � £ � � � � � �� � ¡ ´Ë

Ì� � ¡ � ¼ � � � � Ã �� � � � « � ¼ ¶ Ì� � ¡ � ¼ � � � � Ã �� � � � « ­ ¡� ¥ Í ¡ � � � ¡� � � ¢�²

Ì� � ¡ � ¼ � � � � � ¶ � ¼
­ ¡� ¥ Ì� � ¡ � ¼ � � � � � ¢ ²

� ­ � � � ¡ � ¼ �� � ¡� ¥ � ÎÉ ª � �� � � � � �� ¢ÐÏ ¡� ¥ ª � � � � Ñ� � � ¯ � � ª « � �� ­ � � � ¢ ¢²

Å

The Shortened XML

Ò Ó¬Ô Õ Ö × ØÙ Ú Û¤Ü ÝÞ ßà á â ß Ø Ýã Ü ä Û Ýå Þ ßæ çè é ê ß Óë

Ò ì é éî
í Ü ã ï Õ Ø Ý ð ñ í Ø Ú Û å Ý òó ð ð ØÙ Ý Ú á Ô Õ Ö

ôÙ Ø ó ð Ø ä Ü Ý ñ õ Øö ð Ø Õ ÷ ØÙ øúù û â âü ù à û ñ ý û òþ

ÿ ï ð �Ü Ù ñ í ó × Ø õ ð ó Õö �

í Ø Ú ã Ù Û ö ð Û Ü Ý ñ

ò ïÙ ö Ü Ú Ø Ü � ð � Ø äÜ ã ï Õ Ø Ý ð �Ü Ö Ö¤Ü � Ú á

é éë Ò ÷ Ü Ü � Û Ú ÷ ÝÞ ß â é û âà é �ü ü ýà à é û ß ë

Ò ð Û ð Ö Ø ë í Ø Ú Û å Ý òó ð ð ØÙ Ý Ú Ò � ð Û ð Ö Ø ë

Ò Ú ï ÷ ð Û ð Ö Ø ë � Ö Ø Õ Ø Ý ð Ú Ü � � Ø ï Ú ó ÷ Ö Ø � ÷	 Ø ã ð é �Ù Û Ø Ý ð Ø ä õ Ü � ð �ó Ù Ø Ò � Ú ï ÷ ð Û ð Ö Øë

Ò ó ï ð �Ü Ù ë �Ù Û ã
 ó Õ Õó Ò �¤ó ï ð �Ü Ù ë

Ò ó ï ð �Ü Ù ë Ø ð ó Ö Ò �ó ï ð �Ü Ù ë

Ò ö ï ÷ Ö Û Ú � ØÙ ë ÿ ä ä Û Ú Ü Ý é � Ø Ú Ö Ø� ò ï ÷ Ö Û Ú � Û Ýå ôÜ Õö ó Ý� Ò � ö ï ÷ Ö Û Ú � ØÙ ë

Ò ã Ü ö � Ù Û å � ð ë à

 ý Ò � ã Ü ö � Ù Û å � ð ë

Ò �ó Ù ä¤ã Ü × ØÙ �ë

Ò � ÷ Ü Ü �ë

XML's Other Tricks

� XSLT – a language to transform XML documents
to something else (you saw the identity
transformation in the last example)

� XML Schemas – should provide a much better
syntax specification than DTD

� Database Connection – every major database
provides data transformations to and from XML

� But, all of these are outside the realm of “web
services”

Next Time

� SOAP

� Tomcat

� A simple request/response

Homework

� Find the proper XML libraries for your favorite
language, get them installed and create a Hello
World XML file. (If Java, install the “jwsdp”)

� Write a program to “walk the tree” and pretty-
print out the tags. I'll show you mine next time

� Find any data format application you have now
and re-phrase it in terms of XML. Write a simple
output method and some useful access methods.
Then, stand back.

Annotated Bibliography

Design Patterns – Elements of Object Oriented Software by Gamma, Helm, Johnson &
Vlissides (Gang of 4). I don't know how you can make sense of OO software today without
this book.

Java Web Services by Chappell & Jewell – an O'Reilly Book. Useful in conjunction with
other books.

Web Services – Essentials by Cerami – an O'Reilly Book. As above – less of a Java spin, but
still, plenty of Java.

Java Web Services in a Nutshell by Topley – an O'Reilly Book. Very good reference work.
You need it.

Professional Java XML by Ahmed, et al. - a Wrox book. Very good collection of tutorials.
Highly recommended.

