HPSS

Programmer’s Reference
Guide, Volume 2

High Performance Storage System
Release 4.1.1

April 1999 (Revision 0)

HPSS Programmer’s Reference, Volume 2

Copyright (C) 1992-1999 International Business Machines Corporation, The Regents of the University of
California, Sandia Corporation, Lockheed Martin Energy Research Corporation, and NASA Langeley
Research Center.

All rights reserved.

Portions of this work were produced by the University of California, Lawrence Livermore National
Laboratory (LLNL) under Contract No. W-7405-ENG-48 with the U.S. Department of Energy (DOE), by the
University of California, Lawrence Berkeley National Laboratory (LBNL) under Contract No.
DEACO03776SF00098 with DOE, by the University of California, Los Alamos National Laboratory (LANL)
under Contract No. W-7405-ENG-36 with DOE, by Sandia Corporation, Sandia National Laboratories
(SNL) under Contract No. DEAC0494AL85000 with DOE, and Lockheed Martin Energy Research
Corporation, Oak Ridge National Laboratory (ORNL) under Contract No. DE-AC05-960R22464 with DOE.
The U.S. Government has certain reserved rights under its prime contracts with the Laboratories.

DISCLAIMER

Portions of this software were sponsored by an agency of the United States Government. Neither the
United States, DOE, The Regents of the University of California, Sandia Corporation, Lockheed Martin
Energy Research Corporation, nor any of their employees, makes any warranty, express or implied, or
assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights.

Printed in the United States of America

HPSS Release 4.1.1
April 1999 (Revision 0)

High Performance Storage System is a registered trademark of International Business Machines Corporation.
IBM is a registered trademark of International Business Machines Corporation.

AlX and RISC/6000 are trademarks of International Business Machines Corporation.

Encina is a registered trademark of Transarc Corporation.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

Sammi is a trademark of Scientific Software Intercomp.

NFS and Network File System are trademarks of Sun Microsystems, Inc.

DST is a trademark of Ampex Systems Corporation.

ACLS is a trademark of Storage Technology Corporation.

Other brands and product names appearing herein may be trademarks or registered trademarks of third parties.

April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Table Of CoONtENISPIEfACE. e e e e e e e e e e Xii
N @ V2= VSRR PRR 1-1
1.1. NBIME SEIVET ..cciiiiiiiiiei ettt 1-1
1.1.1. PUIPOSE ... s 1-1
1.1.2. COMPONENTES ..ttt e e e e e 1-1
1.1.3. CONSLraiNtSoooeeieiiee 1-1
1.1.4. I o] =V 1= PP OTPRR 1-1
1.2. T 1[I T=T A= P 1-2
1.2.1. PUIPOSE ... e 1-2
1.2.2. Bitfile Server COMPONENTS..........oviiiiiiieiiiiee e 1-2
1.2.3. (O0] 0151 7= 1] 0| £ SRR 1-2
1.2.4.] o] = T 1= T 1-3
1.3.] (0] = 1o [T =] V<] TSP PPPPPPPRIN 1-3
1.3.1. PUIPOSE ... s 1-3
1.3.2. 107011] oT0] aT=T o | £SO UPTPTPTPTR 1-3
1.3.3. CONSLraiNtSoooeeieiiee 1-4
1.3.4.] o] T 1= PP UUUPPR TP 1-4
1.4. 0 1Y PP 1-4
1.4.1. PUIPOSE ... e 1-4
1.4.2. COMPONEINES ...ttt 1-5
1.4.3. (O0] 0151 7= 1] 0| £ SRR 1-5
1.4.4.] o] = T 1= T 1-6
1.5. Physical VolumME LIDIary.........ceuieciiiiiiiiiee st e e e e e e snneanee s 1-6
1.5.1. PUIPOSE ... 1-6
1.5.2. COMPONENTES ..ttt e e e e s 1-6
1.5.3. CONSLraiNtScooeeieiieee 1-7
1.54.] o] =T =P OPUPPRRPPRR 1-7
1.6. Physical VOIUME REPOSITONYccoiiuiiiiiiiiiie ittt 1-7
1.6.1. PUIPOSE ... e 1-7
1.6.2. COMPONEINES ...ttt 1-7
1.6.3. (O0] 0151 7= 1] 0| £ SRR 1-8
1.6.4.] o] = T 1= T 1-8
1.7. SYSIEM IMBINAGET ...ttt e e et e e e e e e e et b b r e e e e e e e aebb e e aaaeees 1-9
1.7.1. PUIPOSE ... s 1-9
1.7.2. 107011] oTo] aT=T o | £SO UUPTPTPTPTR 1-9
1.7.3. CONSLraiNtSoooeeieiieee 1-14
1.7.4. I o] =V 1= PP OTPRR 1-15
1.8. [0 Tor= 1 (0] g IS Y= V=Y PP 1-15
1.8.1. PUIPOSE ... e 1-15
1.8.2. COMPONEINES ...eiiiiiieeii e 1-15
1.8.3. (O0] 0151 7= 1] 0| £ SRR 1-15
1.8.4. LIDrarIES e —————— 1-16
1.8.5. Referenced Data TYPES ...cooocvvveieeie e e st e e e snnrnaee e e 1-16
HPSS Programmer’s Ref., Vol. 2 April 1999

Rev. 0

2. N ST A VA= G U] 0103 1 T0] o 1T 2-1

2.1. y Y o I ¥ T i o] PSRRI 2-1
2.1.1. NS _DEIELE ... 2-2
2.1.2. NS_DEIBTEACL ..eeiiieiieieeie et 2-5
2.1.3. NS_DElEtEFIIESEL.....cci e 2-8
2.1.4. NS_GELACL ..o 2-10
2.1.5. NS_GELALIIS Loeeiiii e e 2-12
2.1.6. NS_GEtFIlESEIALIS ... 2-15
2.1.7. ns_GetFilesetByNameOrIdcccocvveeeiiiiiiiieeece e 2-17
2.1.8. NS_GetNAME ... 2-19
2.1.9. NS_INSEIT. it 2-21
2.1.10. NS_MKDIE ...t 2-25
2.1.11. NS_MKFIHESEL ...vveiiiee e 2-28
2.1.12. NS_MKJIUNCHION ..eeiiiiiiiiiiiiie et 2-31
2.1.13. NS_IMKLINK .ot 2-34
2.1.14. NS_MKSYMLINKeeiiiiiiiii e 2-37
2.1.15. NS_NSGELALIIS ... e 2-40
2.1.16. NS _NSSEIALIIS ...coeiiiiiiieei e 2-42
2.1.17. (S R LST= Lo | | RS 2-44
2.1.18. NS_REAAFIESEIALIS ...t 2-47
2.1.19. NS_ReadGIlobalFileSetsccccooiiiiiiiiii e 2-49
2.1.20. ns_ReadJunctionPathNames............ccccceiiiiiiiiii e 2-52
2.1.21. [R (Y= Uo | USSR 2-54
2.1.22. NS_RENAIME ... e e e s 2-56
2.1.23. NS_SEIVEIGEIAIIS ...evvttii et 2-59
2.1.24. NS_SEIVErSEIAIIS ...cooiiiiiiieiie e 2-61
2.1.25. NS_SEEACL ..eeiiiiiiiii e 2-63
2.1.26. NS_SEIALIS ..o 2-65
2.1.27. NS_SEtFIIESELALIIS ..o 2-68
2.1.28. NS_SEALISTICS .uevveeiiieei e 2-70
2.1.29. (ST oo F= 1 1= AN O IR 2-72

2.2. Data DefiNItIONS.cciiiiiiiiieii e e e e e e e 2-75
2.2.1. Access Control List Conformant Array - ns_ ACLConfArray t.......... 2-75
2.2.2. Access Control List Entry - nS_ACLENtrY t....ccooviiiieiiiiiieiiieeee 2-75
2.2.3. Attribute Bit Map - NS_AIBItS t....cccceeeiiiiiiiieeee e 2-76
2.2.4. Name Server Directory Entry - nSs_DIirEntry_t........cccccoviiiieiiiinnennn 2-80
2.2.5. Name Server Fileset Bit Map - ns_FilesetAttrBits_t...........cccvveeeeen. 2-81
2.2.6. Name Server Fileset Attrs structure - ns_FilesetAttrs_t................... 2-82
2.2.7. Name Server FilesetAttrs Conformant Array -

NS_FilesetAttrsCONfAITAY t......occuiiiiiiee e 2-83
2.2.8. Name Server FilesetAttrs Entry - ns_FilesetAttrsEntry t.................. 2-84
2.2.9. Name Server Global Fileset Conformant Array -

NS_GFileSetCONTAITAY t.....eiiiiiiiieiiiie e 2-85
2.2.10. Name Server GlobalFileset Entry - ns_GlobalFilesetEntry t............ 2-85
2.2.11. Name Server Junction Path Conformant Array -

Ns_JunctionPathConfArray t.........ccccceeiiiiiiiiiiiiiee e 2-86
2.2.12. Name Server Junction Path Entry - ns_JunctionPathEntry t........... 2-87

ii April 1999 HPSS Programmer’s Ref., Vol. 2

Ref. 0

2.2.13. Name Server Object Handle - ns_ObjHandle t.................cocunnneen. 2-87
2.2.14. Name Server Return Structure - ns_RemaingPath_t...................... 2-88
2.2.15. Name Server Configuration - ns_SpecificConfig_t........ccccccevvuvnnen. 2-89
2.2.16. Name Server Statistics Structure - ns_StatisticsRec t.................... 2-92
3. Bitfile SEerver FUNCLIONS ..ot e e e et e e e e e e e e aee s 3-1
3.1. y Y o I ¥ T i o] o PRI 3-1
3.1.1. bfs BitfileGEALIS. ... 3-2
3.1.2. bfs BitfileGEtXALLIS .. 3-4
3.1.3. bfs BitfileOPENGELALIISuevieee e 3-6
3.1.4. bfs_BitfilleOPENSELALIIScoveiiie it 3-8
3.1.5. bfS BitfilESELALIIS ..oeeee e 3-10
3.1.6. bfs_BitfileOpenSetCoSBYHINIS ...t 3-12
3.1.7. DS ClEAN e 3-14
3.1.8. DFS_ ClOSE ... 3-16
3.1.9. o] ST O] o), 11T RS 3-18
3.1.10. DFS CrEAte ... 3-20
3.1.11. DfS_GEtCOSSIALSvviii it 3-22
3.1.12. DFS_MIGrate....cco i 3-24
3.1.13. BFS OPBN ... ———— 3-26
3.1.14. DFS_PUIMGE ... 3-29
3.1.15. DFS_ REAMeiiiiiii 3-31
3.1.16. DfS SerVerGetALIS ... 3-33
3.1.17. DS SErVErSEtALIISvviiiiie e 3-34
3.1.18. DFS_SEAGE ... 3-36
3.1.19. bfs_StageCallBackKc.ueuvveeeiiiiiiiiiiieee e 3-38
3.1.20. BFS UNINK.....ceieeeeeee e 3-40
3.1.21. DFS_ WWIITE . 3-42
3.1.22. Bitfile Volatile and Metadata Attributes - bf_attrib_t.............ccccee. 3-44
3.1.23. Bitfile Metadata Attributes - bf_attrib md_t..........cccooeveiiiiie 3-45
3.1.24. Bitfile Descriptor - bf_descriptor_ md_t........cccooeiiiiiiiiie, 3-47
3.1.25. Bitfile Storage Level Statistics - bf_level_stats md.............cccceee.... 3-48
3.1.26. Bitfile Managed Object Data Structure - bfMO_attrib_t................... 3-49
3.1.27. Bitfile Open Context - bf_open_context.........cccccceevvviiiiiieeeee i, 3-49
3.1.28. Bitfile Open Context List - bf_open_context_list t...........cccoecviieenen. 3-51
3.1.29. Bitfile Open Context Header - bf _open_context_hdr t..................... 3-51
3.1.30. Bitfile Tape Segment Metadata - bf tape_segment_md t............... 3-52
3.1.31. Bitfile Disk Segment Metadata - bf_disk_segment_ md t................ 3-53
3.1.32. Bitfile Disk Segment Region - bf_disk_region_md_t.............ccccce... 3-54
3.1.33. Bitfile Disk Allocation Map Metadata - bf _disk_alloc_rec_md t...... 3-55
3.1.34. Class of Service - hpss_€0S_ Md_t.....cooooiiiiiiiiiiiiiiiniieeee e 3-56
3.1.35. Class of Service Hints - hpss_cos_hints_t.......ccccccccvviiiiiiineeeeninnnns 3-58
3.1.36. Class of Service Priorities - hpss_cos_priorities_t........ccccccceveeeinnes 3-59
3.1.37. Owner Record - bfs_ OWNer_rec t......cccccovciiiieeeiee i, 3-61
3.1.38. Request Attributes - req_attrib_t........ccccooiiiiiiiiiii e, 3-61
3.1.39. Reverse Map Field - rev_map_t...cccccccciiiiiiiieiie e, 3-62
HPSS Programmer’s Ref., Vol. 2 April 1999 iii

Rev. 0

3.1.40. Bitfile Cache Entry - bf _cache _entry t.......ccccocceeiiiiiiiiiieeeee e, 3-63
3.1.41. Bitfile Cache Hash - bf_cache_hash t.........cccccccoiiiiiii 3-64
3.1.42. Bitfile Segments Cache Entry - bf segments_cache_entry t.......... 3-65
3.1.43. Storage Segment Delete Entry - sseg_delete_entry t.......cc.ccoceee.. 3-66
3.1.44. Current Bitfile Segment Information - current_segment_info_t........ 3-66
3.1.45. Bitfile Disk Map - bf_disk_map_t......cccccooiiiiiiii 3-67
3.1.46. Bitfile Server Connect Context - bfs_connect_context t.................. 3-68
3.1.47. HPSS Segment List - hpss_segment_list_t..........cocceeviiieeiniinennnne. 3-69
3.1.48. HPSS Segment Descriptor - hpss_segment_desc t..........ccccceeeee... 3-69
3.1.49. HPSS Background Stage CallBack Structure - bfs_callback_addr_t3-70
Other Interfaces (OFD and ReqUESE liSt)evvveeiiiiciiiiiiie e 3-70
3.2.1. NPSS_INIEOFAMOY ... e 3-71
3.2.2. (0] EST ST 1= (@] (o SRR 3-72
3.2.3. NPSS_Fre@Ofd.coiiiiiiie e 3-74
3.2.4. PSS _CIOSEAIIOFAS ... 3-75
3.2.5. NPSS_CleanuUPOFUS........ccoiiiiiiiiiii e 3-76
3.2.6. PSS _INItOFALIS...ceieii e 3-77
3.2.7. hpss_ReqLiStDeleteENtrycoocuviiiiiiiie e 3-78
3.2.8. hpss_ ReqLIStFINAREAIcccoiiiiiiiiiiee e 3-79
3.2.9. NPSS_REQLISTINIT....ccciiiiiiiiiiii s 3-80
3.2.10. hpss_ ReqLIStINSEMENIIYcccciviiiiiiiiee e 3-81
3.2.11. NPSS_REQLISINEXIENTIY ...t 3-82
3.2.12. PSS REQLISISEtStateuuveiiee et 3-83
Other Data Definitions (OFD and request liSt)cccceviiiieiniiiie e 3-84
3.3.1. HPSS Open File Descriptor (OFD) - hpss_ofd_t.......cccccccovviivinnnnnn. 3-84
3.3.2. HPSS Open File Descriptor List Header - hpss_ofd_hdr_t.............. 3-85
3.3.3. Request List - hpss_reglist_t......ccooveeiiiiiiiiieee e, 3-86
3.3.4. Request List Entry - hpss_reqlist_entry t........cccccoocieiiiieiniinennnn 3-86
StOrage SEerver FUNCHIONS ...ttt e st e e e e e 4-1
y Y o I ¥ T i o] o PRI 4-1
4.1.1. SS_BEQINSESSIONeiiiiiiiiiciiieiie et e a e 4-2
4.1.2. SS_ENASESSION....uiiiiiiiiii it 4-4
4.1.3. SS_GetStorageClasSStalsS ... i 4-6
4.1.4. SS_GetWaItINGEVENISccoiiiiiiiiiiee et 4-8
4.1.5. SS_MaAPCIEALEceviiiiii et 4-10
4.1.6. SS_MAPDEIETE. ...t 4-12
4.1.7. SS_ MaAPGEIALIIS . ..ttt 4-13
4.1.8. SS_MAPSELALIIS ... 4-14
4.1.9. SS_PVCIBALE ...t 4-16
4.1.10. SS_PVDEIELE ... 4-18
4.1.11. SS PV GBIAIIS ..ttt 4-19
4.1.12. SS_PVIMOUNT ... e e 4-21
4.1.13. LIS 2 VA 2 L= = Uo SRR 4-23
4.1.14. SS_ PV SEIALIIS .ttt ettt ettt et et e e e e e e eeeeeeeeeeeeeeeeeeeees 4-25
4.1.15. SS_PVUNMOUNT ettt e e e 4-27
April 1999 HPSS Programmer’s Ref., Vol. 2

Ref. 0

4.1.16. IS VALY €1 (= 2P 4-28
4.1.17. SS_SEIVEIGEIAIIS .coeiiiiiiiit ettt 4-30
4.1.18. SS_SEIVEISEIALIIS ..uuiiii it eee 4-31
4.1.19. SS_SSCOPYSEIMENT ...ttt 4-33
4.1.20. SS_SSCIBALE ...ciiiiiiiiie et 4-35
4.1.21. SS_SSDIELE ...t 4-38
4.1.22. SS_SSDEIEIELISTvviiiiie e 4-40
4.1.23. SS_ SSGRIALIIS ...ttt 4-42
4.1.24. SS_SSIMOUNL ...ttt ane 4-43
4.1.25. SS_SSMOVESEOMENT....cciiiiiriiiiiie et 4-45
4.1.26. SS_SSREAM....... it 4-47
4.1.27. SS_ SSIVGELALIIS ..ottt 4-49
4.1.28. SS_ SSIVSELALIIS ettt 4-50
4.1.29. S SSSEUIALIIS .teieiiiiieietiteieteteteeeeeeeeeeeeeee et e e ee e e et et eeeeeeeeeeeeeeeeeeeeeeeeeeas 4-52
4.1.30. SS_SSSHANMMOUNT. ...t 4-54
4.1.31. SS_SSUNIINK .. 4-56
4.1.32. SS_SSUNMOUNT ettt e e e eee 4-58
4.1.33. ISR ISV 1 (= TR UPPRPPRP 4-59
4.1.34. SS_VVCIBALE ...ttt e 4-61
4.1.35. SS_VVDEIELE ... 4-63
4.1.36. SS_ VVGBIAIIS ..ot 4-65
4.1.37. SS_VVIMOUNT ... e e e e e e e e eeees 4-67
4.1.38. LISV A VA 2 L= = Lo S URSRRR 4-69
4.1.39. SS_ VWV SEEIALIIS ..eeieieiiieieieteteteteeeee ettt ee et et e et e et et e e e e e eaeeeeeeeeeeeeeeeeeeees 4-71
4.1.40. SS_VVUNMOUNT ettt e e e e eee 4-73
4.1.41. TSIV A ALY 1 (= T PR UPPRPPRR 4-74
4.2, Data DEfiNItIONS.ciiiiiiiiieiiiei ettt e e nb e e s e e e nree e e e nees 4-76
4.2.1. Storage Server Attribute Record - ssrv_attr t........ooceeveeniiiiiennen. 4-76
4.2.2. Storage Segment Record - storage_segment_record_t.................. 4-77
4.2.3. Storage Segment Attribute Record - SS_attr t........ccooccveviiieeennnne, 4-79
4.2.4, Storage Segment Metadata - storage_segment_ md_t.................... 4-80
4.2.5. Storage Map Record - storage_map_record_t..........cccocveeriineeennnnn. 4-82
4.2.6. Storage Map Attribute Record - ss_map_attr t......cccccceevvvvciiennnnenn, 4-84
4.2.7. Tape Storage Map Metadata - storage_map_md_t.........cccceeernen. 4-84
4.2.8. Disk Storage Map Metadata.........ccccceeeviicivviieneee e 4-87
4.2.9. Virtual Volume Record - virtual_volume_record_t.........ccccccovvurnneen. 4-88
4.2.10. Virtual Volume Attribute Record - vw_attr t........ccccciveeveeeniiiciinne, 4-91
4.2.11. Virtual Volume Metadata - virtual_volume_md_t............ccooiiinenrenn. 4-92
4.2.12. Physical Volume Record - physical_volume_record t..........cc....... 4-95
4.2.13. Physical Volume Attribute Record - pv_attr_t.........ccccveiviiiienninnen, 4-98
4.2.14. Physical Volume Metadata - physical volume md_t..........ccc.......... 4-99
4.2.15. Device Table Record - device_table_record t........cccccccvieeiiiiinnneen. 4-102
4.2.16. Session Record - SS_SESSION L.....uuuiiieeeiiiiiiiiiiiie e e e e 4-103
4.2.17. Relative Address - relative_address_t........ccccccviiiiiieiieiiiciiieeeeeen, 4-105
4.2.18. Composite Address - composite_address t........ccceevveeeeeniiinvnnnnn. 4-105
4.2.19. Absolute Address - absolute_address_t.......ccccooecieeiiiiiiiiiiiinenennns 4-106
4.2.20. Physical Volume List - pv_liSt_t.....cccovereeiiiiiiiiece e 4-106
HPSS Programmer’s Ref., Vol. 2 April 1999

Rev. 0

4.2.21. Physical Volume List Element - pv_list_element t.............ccccveeee.n. 4-106

4.2.22. Owner Record - OWNEI _FEC 1cccuuuiiiiiieiiiiiiieeee e 4-107
4.2.23. Waiit List - WathSt_f......ueevieeiiiiiiiceece e 4-107
4.2.24, Storage Class Array - SS_Class_array t.......ccccoeeiniiieeeniiineeennnnnn. 4-108
4.2.25. Storage Class Array Element - ss_class_t......cccccccovviieeneeeiiicinnnnn. 4-108
4.2.26. Event Array - SS_SCIassS_array t.......ooccceeieeeiniiiiiieeee e 4-109
4.2.27. Event Array Element - sSs_event reC_t......ccccceeeeviiiciiieenee e e, 4-109
4.2.28. SEOMENT AITAY . ..eiiiiiiiiiiiiiie et 4-110
4.2.29. Delete SEgMENT AITAYcccceeiiiiiiiieie e e e e e e e 4-110
4.2.30. Delete Segment Array Element............cooviiiiiiiiiiiiiieee e 4-110
4.2.31. Copy Control BIOCK..........uuviiieeiiiiiieice e 4-111
LT |V o AV7=] g U o o3 A To T I PSPPSRI 5-1
5.1. F o B U Tt o o S PSPPI 5-1
5.1.1. (0017 S Y o To | P STTRP 5-2
5.1.2. MVI_Create@DEeVICE........uiiiiiie e 5-3
5.1.3. MVI_DEletEDEVICE ...t 5-5
5.1.4. MVI_DEVICEGEIALIISeviiiiiie e e e 5-7
5.1.5. MVI_DeVICeGELALIS 1ODoiiiiiiiieee e 5-9
5.1.6. MVE_DEVICESEIAIISuiiiiieee e 5-10
5.1.7. MVI_DeVICeSEtAHIS [ODcooiiiiiiiiieee e 5-12
5.1.8. MVE_DEVICESPEC ...cc oottt e e srrre e e e e e e 5-14
5.1.9. MVI_MVRGELALIIS ... 5-16
5.1.10. MVI_MVRSEIALIIS ..o 5-17
5.1.11. MVE_REA ... e 5-19
5.1.12. MVE_SEIVEIGELALIIS ..t 5-21
5.1.13. MVI_SEIVErSEtATIIS ..o 5-22
5.1.14. LNV AT 1 (=SSR 5-24
5.2. Data DefiNitIONS......cciiiiiiiiiieii e e e e e e 5-26
5.2.1. Mover State Structure - mover_attr_t........cccccceeeiniiiiviiiiiii e, 5-26
5.2.2. Device Descriptor - devdesc_attr t.........cccccceeeiiiiiiiieineee e, 5-27
5.2.3. Mover Configuration Structure - mvr_config_t.......ccccccceeeviviiiinnnnnnn. 5-32
5.2.4. Mover Protocol Message StruCtUIeSecovieeeeriieeeniiiee e 5-33
6. Physical Volume Library FUNCLIONScoiiiiiiiiiici e 6-1
6.1. y Y o I ¥ T i o] o PRI 6-1
6.1.1. PVI_AIOCAEVOIuveeiiee i 6-2
6.1.2. PVI_CanCelAIIJODSooviii 6-4
6.1.3. O3V O (== (=1 1Y SR 6-5
6.1.4. PVI_DealloCateVol...........eiiiiiiiiiiiii e 6-6
6.1.5. PVI_DEIBLEDIIVE ...eeeeee ettt e e e arre e e e e e ennes 6-7
6.1.6. PVI_DISMOUNIDIIVEeviiiiiiiiiie ittt 6-8
6.1.7. PVI_DismountJobld.........c.cuviiiieii e 6-9
6.1.8. PVI_DISMOUNtVOIUMEcooiiiiiiiiiiii e 6-10
6.1.9. PVI_DIVEGELALIIS ..ot e e e 6-11
6.1.10. PVI_DIIVESEIALIS ..ottt 6-12
Vi April 1999 HPSS Programmer’s Ref., Vol. 2

Ref. 0

6.1.11. 037 I =T o T S UERR P 6-14
6.1.12. PVI_IMPOIT. . 6-15
6.1.13. PVI_MOUNE ... 6-17
6.1.14. PVI_MOUNTAA. ..o 6-19
6.1.15. PVI_MOUNTCOMMIL ..o 6-21
6.1.16. PVI_MoUuntCompleted.........ocuviiiiiiiie e 6-23
6.1.17. PV MOUNENEWeeiieei it s e e e e et e e e e e e e 6-25
6.1.18. PVI_MOVE .. 6-27
6.1.19. PVI_NOtIfyCartridgeuvviveiee e 6-29
6.1.20. PVI_PVLGELALIIScoeiiiiiieeiiie ettt 6-31
6.1.21. PVI_PVLSELALISeeiiiiiiiie ittt 6-32
6.1.22. PV QUEUBGELALLIS ...ttt e e e 6-34
6.1.23. PVl QUEUEBSELALIIS ..o ettt e st e e e e e e re e e e e e e nnes 6-35
6.1.24. PVI_REQUESIGELALLISeeiiiiiiiee it 6-37
6.1.25. PVl REQUESISEIAIIS ... e 6-38
6.1.26. PVI_SErVEIGELALIISeeii ettt 6-40
6.1.27. PV SEIVEISEALIIS. ...t 6-41
6.1.28. PVI_VOIUMEGELALISeeiiiiiiiiie e 6-43
6.1.29. PV VOIUMESELALIS ...t e e 6-44
6.1.30. pVI_WriteVolumeLabel ... 6-46
6.2. Data DEefiNItIONS.eiiiiiiiiie ittt et e e st e e s e e e e e e e nnees 6-47
6.2.1. PVL Data Structure - pvl_data_t.......cccccooiiiiiiiiiiiiiiiee e, 6-47
6.2.2. Queue Data Structure - api_queue_data_t........ccccceeeveeriiiiiieennnnnn, 6-48
6.2.3. PVL Job Queue Entry - request_data t........cccccceeviiiiiiiiiiinenniiiinen, 6-50
6.2.4. Cartridge ID Structure - Cart_t......cccccceeeeiiiiiiieeie e ecsiieee e e 6-53
6.2.5. Volume SErUCtUre - VOl t....oooeeiiiiieeeee e 6-54
6.2.6. Media Type Structure - media_type_t......cccovveveeiiiiiiiiiee e, 6-54
6.2.7. Active Volume State Structure - activity data_ t........c.cccccoevviiiinenn.n. 6-55
6.2.8. Activity Structure - actiVity t.......cccccveeeeiiiiiieeeee e 6-57
6.2.9. Client Information Structure - client_info_t.........cccccoiiiiiiiiinninns 6-58
6.2.10. Job Data Structure - job_data t..........ccccvveveeeiiiicieee e, 6-59
6.2.11. Job Entry Structure - Job_ent_t.......ccccooiiiieiiiiiieieiieeee e 6-61
6.2.12. Cartridge List Entry Structure - cart_ent_t.......cccccceeevviviiiineeeeeeniinnns 6-62
6.2.13. Volume Data Structure - vol_data_t........cccccoeveeiiiiiiiiee e, 6-62
6.2.14. Drive Data Structure - drive_data_t..........cccovvereeeiiiiiiiineee e, 6-64
6.2.15. Drive Index - drive_iNdeX_t........cccuviiiiiiiiiiiiiieeeeeeee e 6-65
6.2.16. Drive ID - driVE L. e 6-65
6.2.17. Drive Type - drive_tYPe t.....coiciiiiiiiiiee et 6-66
6.2.18. Drive Type Entry - drive_type_ent_t........ccccieeeeeiiiiciiieeee e 6-66
6.2.19. JOD ID - JOD_id_t e 6-67
6.2.20. PVR IndeX - PUr_INAEX_Tu.iiviiiiiiiiiiiiiee e 6-67
6.2.21. Queue Data - queue_data t.......ccoocviiiiiiieiieiiiiieeee e 6-67
6.3. Other INTEITACESveie e e b e 6-69
6.3.1. SS_MOUNLCAIIDACKcoeeieiiiiiiiiee e 6-69
7. Physical Volume RepoSitory FUNCLIONScoiiiiiiiiiiieiiiie et 7-1
HPSS Programmer’s Ref., Vol. 2 April 1999 vii

Rev. 0

7.1. Y o I U] To 10T 7-1

7.1.1. PVI_AUGIT ... 7-2
7.1.2. PVI_CartridgeGELALIISuvveeeee e et 7-4
7.1.3. PVI_CartridgeSetALIScoieiiie et 7-5
7.1.4. 017 SO =T o TSR 7-7
7.1.5. PVI_CHRECKOULeiiiiiiiiie ittt 7-8
7.1.6. PVI_DIiSMOUNECAIT ... 7-10
7.1.7. PVI_DISMOUNTDIIVEeiiiiiiiiiie ettt 7-11
7.1.8. 037 =1 =T ot SRR 7-12
7.1.9. PVI_INJECT ...t 7-14
7.1.10. O3V I £ AN | (@=L SRR 7-15
7.1.11. PVr_LiStPendingMOUNTSooiiiiiiiiiiiie e 7-17
7.1.12. PVI _IMOUNT. e e e e e e e 7-19
7.1.13. PVI_MoUNtCOMPIELEooiiiiiiieiii e 7-21
7.1.14, PVI_PVRGELALIS ..ot 7-23
7.1.15. PVI_PVRSELALIIS ..o 7-24
7.1.16. PV _SEIVEIGEIALIIS ...cvvvii et 7-26
7.1.17. PVI_SEIVEISEIALIIS ... 7-27
7.2. DEVICE INLEITACES ...eiiiiiiiiiie ittt ettt e st e e sn e e e e e e e e e nees 7-29
7.2.1. AEVICE AU ... 7-29
7.2.2. deVICE _DISMOUNL.....cciiiieiiiciieiie e e e e e e e e e e 7-30
7.2.3. JEVICE _EJECT ...eiiiiiiiiii ettt 7-32
7.2.4. Lo Lo 1o Y o SRR 7-33
7.2.5. JEVICE_INJECT....ciiiiiiei et 7-34
7.2.6. device LoCatioNTOSINGcccvvveeiiee e e it e e e e e e 7-35
7.2.7. AEVICE _IMOUNL ...ttt e e e 7-36
7.2.8. device_ MountComPIELe.........uuuvveieeiiiceee e 7-38
7.2.9. AEVICE _REICASEeeeiiiie e 7-39
7.2.10. AEVICE _SEIDIIVE ...uviiiiiie et a e 7-40
7.3. Data DefiNItIONS.coiiiiiiiiieii e e e e e e e e e e 7-41
7.3.1. Cartridge Side - SIde_t......uuiiieeiiiiciiiiece e 7-41
7.3.2. Arive_addr .. .o 7-41
7.3.3. o] o] g A= Lo (o [N S USSR 7-41
7.3.3. [oTox= 110] o 1 SP P RRURRRP 7-42
7.3.4. (o= L A [- L= [PSSR 7-42
7.3.5. 017 e F= L= T SO R ERTRP 7-45
7.3.6. Manufacturing Lot Number - [ot_number_t...........ccoviveeeieniicinnnnen. 7-46
7.3.7. Cartridge Manufacturer - manufacturer_t..........ccccccvcvveenniineeinnnnn. 7-46
7.3.8. Check-in request - checkin_req_t.....ccccccciviiieeeeeeee e 7-46
7.3.9. OthEr APIS .. 7-48
7.3.9.1. pVl_MountCompletedccceoiiiiiiiiiiiee e 7-48
8. System Manager FUNCLIONSuiii ittt et e e e e e bt e e s nnneeeas 8-1
8.1. F o B U Tt o o SRR 8-1
8.1.1. SSM_ACCICNANGE ...eiiiiiiiii ettt 8-2
8.1.2. SSIM_ACCIRUN .. e 8-4
viii April 1999 HPSS Programmer’s Ref., Vol. 2

Ref. 0

8.1.3. SSM_AAM e a e e a e e e e 8-5
8.1.4. SSIM_AMIGEL .o 8-8
8.1.5. SSIM_ALTREG .. ettt 8-10
8.1.6. SSIM_ATISEL ...t 8-12
8.1.7. SSIM_CAMEXPOIT...cciiiiiiie e 8-14
8.1.8. SSM_CArtIMPOIt......ccoiiiiiiiiiiee e 8-16
8.1.9. SSIM_CAIMOVEoviiiiiiiii e eees 8-18
8.1.10. SSM_CHECKIN. ...t 8-20
8.1.11. SSM_ChECKOUL....uuiiiie et e e e e e e e e 8-22
8.1.12. SSM_CONFIGATDeeiiiiiiiiie e 8-24
8.1.13. SSM_CONfIGDEIBLE ..cevee e 8-26
8.1.14. ssm_ConfigGetDefaultooooiiiiiiiii e 8-28
8.1.15. SSM_CONfIGREAU.......cciiiiiiiiiiic e 8-31
8.1.16. SSM_CONfIQUPAALEeeiieiiiiii e 8-33
8.1.17. LS 1 T 1= o USSR 8-35
8.1.18. SSM_DrVEDISMOUNT ...t e e 8-37
8.1.19. SSM_FIlESELCIEALE ... e 8-39
8.1.20. SSM_FIleSetDElete......ccoi e 8-41
8.1.21. SSM_JODCANCEL....uieiie e 8-43
8.1.22. SSM_JUNCHONCIEALE......eeeiiiiiiee ettt e e 8-45
8.1.23. SSM_JUNCLIONDEIBLE ... 8-47
8.1.24. SSM_RESOUICECIEALE.ceiiiiiieiiieiieee e 8-49
8.1.25. SSM_RESOUICEDEIETEvvviiiie e 8-51
8.1.26. SSM_RESOUICERECIAIMuviiiiiiiiiiiie e 8-53
8.1.27. SSM_RESOUICEREPACKuviiiiiie i 8-55
8.2. APIs Available to the Other HPSS SUDSYSIEMScvvviiiiiiiiiiiiee e 8-57
8.2.1. SSM_BItflENOLIYvvviieie e 8-58
8.2.2. SSM_CArtNOLITY ...t 8-60
8.2.3. SSM_DEVICENOLITY...eeiiiiii i 8-62
8.2.4. SSM_DMGHFIlESEtNOLIfY......cociiiiiiiiiie e 8-64
8.2.5. SSM_DMGNOLITY .vvvieiieeiicciiee e e e 8-66
8.2.6. SSM_DINVENOLITYeeiiiiiiiii e 8-68
8.2.7. SSM_LOGFIIENOLIfY ..eeiee e e 8-70
8.2.8. SSM_LOGMSGNOLIY ...t 8-72
8.2.9. SSM_LSSTAtSNOLIfY ..evveeei e 8-73
8.2.10. SSM_MPSNOTITY ...t e 8-75
8.2.11. SSM_MPS_SCIasSNOLIfYuuuvveieeeiiiiiiiee e 8-77
8.2.12. SSM_MVRNOLIY.....eeiiiiiiiii e 8-79
8.2.13. SSM_MAPNOLIfY...euvieeiee e e e e e e e e 8-81
8.2.14. SSM_MOUNENOLITY.....coiiiiiiiiiie e 8-83
8.2.15. SSM_NFS2_StatSNOLifycvvviiiieeiiicie e 8-85
8.2.16. SSM_NSFIlESEINOLIYeevieiiiiie e 8-87
8.2.17. SSM_NSNOLITY....uiirieiie e e e e e 8-89
8.2.18. SSM_PVLNOUTY ..t 8-91
8.2.19. SSM_PVNOUY ...t e e e 8-93
8.2.20. SSM_PVRNOLITY ...t 8-95
8.2.21. SSM_QUEUENOLITY ..eeeiii i 8-97
HPSS Programmer’s Ref., Vol. 2 April 1999 iX

Rev. 0

8.2.22. SSM_REQUESINOLITYccoiiiiiiiiiic e 8-99

8.2.23. SSM_SFSNOLITY ...t 8-101
8.2.24. SSM_SSNOLTY ..eeeiiiiiie it 8-103
8.2.25. SSM_SEIVEINOLITYeeiiiiiii it 8-105
8.2.26. SSM_SSIVINOLITY ...uviiiiiei e e 8-107
8.2.27. SSM_TapeChecKINNOLIfYccoiiiiiiei e 8-109
8.2.27. SSM_VVNOLTY ..oeiiiiiiie it 8-111
8.2.28. SSM_VOINOLY. ..ottt 8-113
8.3. Data DEefiNItIONS.eiiiiiiiiie ittt et e e st e e s e e e e e e e nnees 8-115
8.3.1. Data Common to the System Manager and the Data Server........... 8-115
8.3.1.1. Significant CoONSEANTScceeeiiiiiiiiiiiee e 8-115
8.3.1.2. Server List - ServerList_t......occueiiiiiiiiiiieeeee e 8-115
8.3.1.3. Drive List - DrIVELISt t......cccccieeieeee e 8-119
8.3.14 Class of Service List - COSLISt t.....ccovviiiiiiiiiiieeeiiiiiieeeeennn 8-120
8.3.1.5. Storage Class List - SCIasSLiSt_t.....ccccoccvvieeeeeiiiiiieeee e, 8-121
8.3.1.6. Hierarchy List - HIerLiSt_t.......cccooviieiniiiiiiiie e 8-122
8.3.1.7. Migration Policy List - MigrPLISt t........ccccovvveeri i 8-123
8.3.1.8. Purge Policy List - PUrgPLISt_t.......cccooiiiiiiiiiiiiiieee e 8-123
8.3.1.9. Notification Structure - NotifyUnion_t.........ccccccovviiiiineeeeeiininns 8-124
8.3.1.10. Server Info Data Structure - SrvinfoUnion_tccccceeeeen. 8-124
8.1.3.11. Drive Data ID - DriveDatalD _t.........cccoocvveeereiiiiiiiiieee e, 8-132
8.3.1.12. Drive Data for Configuration Operations - DriveData_t........... 8-133
8.3.1.13. Cartridge Import Data - PvVIImport t.......cccccccceeiiiiinieeeeeeiinnnns 8-133
8.3.1.14. Storage Server Resource Data Structure - SsResources_t.... 8-135
8.3.1.15. Storage Server Repack Structure - SsRepack_t...........cc........ 8-135
8.3.1.16. Storage Server Reclaim Structure - SsReclaim_t................... 8-136
8.3.1.17. ClENID....cciiiiiie ittt 8-137
8.3.2. Data Private to the System Manager.........cccocvverniiiieiiiine e 8-137
8.3.2.1. Table of Registered Clients - client_list_t..........ccccceveveeriiinnnne. 8-137
8.3.2.2. Server Network Connection Table - server_net_t.................. 8-139
8.3.2.3. Table of Registered Managed Object Attributes -
[=To ISy (=T =To [2. Lo T TR 8-141
8.3.2.4. Notification QUEUESccoiiciiiiieiee et 8-142
8.3.2.5. Configuration File List - config_file_list_t..........cccooiiiinninnins 8-144
8.3.2.6. Copy of the HPSS Server Configuration File -
Server_CoNfig NSt L. ... e 8-145
8.3.2.7. Condition Variable Structure - condition_variable t................ 8-146
8.3.2.8. Drive Data Structure - DriveDatalD_t...........cccccveevieeenniiiinneen. 8-146
8.3.2.9. Bitfile ID Register Structure - ssm_bitfile_reg_id t.................. 8-146
8.3.2.10. Descriptive Name - ssm_descname_t........cccccocuvveeeeeeenninnns 8-147
8.3.2.11. Bitfile Object ID - ssm_file_id_t.......ccccoeviiirreeeiiiiiiieee e 8-147
8.3.2.12. Log File Object ID - ssm_lodfile_t.......ccccccoviviiniiiiinniiienn 8-147
8.3.2.13. Storage Server PV Object ID - sSM_SS_pV_t.cccccveeeriicinnnnnnnn, 8-148
8.3.2.14. Site List — SItELISt t....eeiiiieiiiiiiiiiiee e 8-148
8.3.2.15. File Family Structure — FileFamilyStruct_t...........ccccccceeerninnnene. 8-149
8.3.2.16. File Family List — FileFamilyLiSt_tf...........cccooeiiiiiieiniieeniiieeee 8-149
8.3.2.17. File Attribute Structure — ssm_fileattr t.............ccccoeeveeriiinnnne. 8-149
April 1999 HPSS Programmer’s Ref., Vol. 2

Ref. 0

8.3.2.18. Logging Daemon Logfile Name Structure — ssm_lodfile_t...... 8-150
8.3.2.19. HDM Fileset Identification Structure — ssm_hdm_fileset_id_t. 8-150
8.3.2.20. Name Server Fileset Information Structure —

SSM_NS_FIlESEL L. 8-151
8.3.2.21. Fileset Name Structure — ssm_fileset name_t...........cccc........ 8-151
8.3.2.22. DMAP Gateway Fileset Structure —ssm_dmg_fileset t......... 8-151
Data Server Client INTEIfACES.........uii i 8-153
8.4.1. ClIENT INOLIY ... 8-154
Other Data Definitions (Data Server CHENtS)cccvveeiieee i 8-156
8.5.1. Data Server Notification structure - NotifyUnion_t.............ccccveeennee 8-156
9. LOCAtiON SErVer FUNCLIONSiiiiiiiiiiiiiiiii ettt e e e e s e e e e e e e e e annnee s 9-1
Client Cache Programming Interface FUNCLONSccvveiiiiiieiiiiie e 9-1
9.1.1. hpss_LocateBFSBYCOSHINLSccuvvivieeiiiciieeeeee e 9-2
hpss_LoCateLOCAtiONSEIVETuviiiiiiiee it 9-4
9.1.3. hpsS_LOCAtEROOINSooiiiiei i 9-5
9.1.4. hpss_LocateServerByPath ..., 9-6
9.1.5. hpss_LocateServerByUUID...........ccccvveee i eecveee e 9-7
9.1.6. hpss_LocationLibINit...........coeviiiiiii e 9-8
hpss_LocationLibDeINitcceeeiiiiiiiiiiiee e 9-9
9.1.8. hpss_LocationLibGetConfigc.cvvviieeiiiiiieiiiece e 9-10
9.1.9. hpss_LocationLibSetConfig..........cccuvveriieeiiiiiiieiece e 9-11
Server Programming Interface FUNCIONScoociviiiiiiie e 9-12
9.2.1. IS_ BFSBYCOSHINTSceiiiiiiiiieiiiiiee e 9-13
IS_GEtSEIVEIMAPS. ... eveieeiiiiee ettt 9-15
9.2.3. L oo 1110 g 11T Y= PSSR 9-17
9.2.4. IS_ROOINS ... e 9-18
9.2.5. Is_ServerByPath.........cccviiiiiie e 9-19
9.2.6. IS_ServerBYUUIDcooiiiiiiiiiiii et 9-20
IS SEIVEIGEIAIIS ...t e 9-21
9.2.8. IS SEIVEISEIALIS. ..ottt 9-22
9.2.9.] €= (T =] 7 11 £ 9-23
9.2.10. SRS t= ST AN 11 = T URR 9-24
Data DefiNItIONS.ceiiiiiiie ettt sttt e st e e b e e nna e e nneeas 9-25
Location Map Structure — IS_map_L.......ccoeeeririieniiiieiieee e 9-25
Location Map Array —Is_map_array t.......ccccccoeviiieeeeeiiiiineneeesninnns 9-26
9.3.3. COS/BFS Selection Structure —Is_cos_bfs_t......ccccoiviiiieiienniinns 9-26
9.3.4. COS/BFS Array Structure —Is_cos_bfs_array t.......cccceceeevvinnnnnn. 9-27
9.3.5. Location Server Statistics Structure — Is_server_stats t.................. 9-27
9.3.6. Location Policy Metadata Structure —Is_policy md_t............c......... 9-30
Remote HPSS Site Metadata Structure — hpss_site._ md_t.............. 9-31
PN oY o 1T a Lo 1D q AN X o] {01 0} Y/ 14 B RPN A-1
F Y oY o= g Lo IO QS T = LY =T =T o = SR B-1
HPSS Programmer’s Ref., Vol. 2 April 1999

Rev. 0

Preface

This High Performance Storage System (HPSS) Programmer’s Reference Guide, Volume 2 - Release
4.1.1, documents core server function calls which are provided by HPSS. It is designed for systems
programmers.

HPSS provides an open interface with application programming interfaces to each HPSS server. Volume
2 documents these function calls interfaces to the core HPSS servers. While it is envisioned that most
users will access HPSS through the client API, standard FTP, parallel FTP, NFS, DFS, MPI-10 or the
Parallel I/0 File System Import / Export interfaces, well defined programming interfaces are also defined
to each HPSS server. It should be noted that programming to the individual server level is a more complex
programming model which requires a greater understanding of the HPSS servers.

It is beyond the scope of this document to provide detailed information on programming at the individual
server level. The API specifications and related data structures are documented for the core HPSS
servers. However, it should be realized that programming at the inter-server level will require more of a
working knowledge of HPSS internals than the Client APIs documented in Volume 1. In addition, internal
infrastructure APIs (e.g. logging, metadata manager, DCE services, communications), and APIs for those
servers which are unlikely candidates for application programming (e.g. Storage System Manager,
Migration Purge Server) are not included in this document.

The objective of this document is to meet the following general goals:

. Define any known limitations of the APIs

. Define the HPSS server application programming interfaces (APIs).
. Define the data definitions referenced by the APIs

Refer to the HPSS Programmer’s Reference Volume 1 for programming interfaces provided to the end
user. Refer to the HPSS User’s Guide for command interfaces provided to end users.

Refer to the HPSS User’s Guide for a description of the following command line interfaces: standard FTP,
parallel FTP, NFS, DFS, IBM SP Parallel I/0O File System Import / Export, and user utilities.

Refer to the HPSS Error Messages Manual for a list of all HPSS error and advisory messages which are
output by the HPSS software. For each message, the following information is provided: message
identifier and text, source file name(s) which generated the message, problem description, system action,
and administrator action.

Refer to the HPSS Administration Guide for a description of the interfaces provided to HPSS
administrators.

This HPSS Programmer’s Reference Guide, Volume 2 is structured as follows:
Chapter 1: Overview This chapter provides an overview of each core
server programming interface, constraints, and

required libraries.

Chapter 2: Name Server Functions This chapter defines the Name Server API
specifications and associated data definitions..

Xii April 1999 HPSS Programmer’s Ref., Vol. 2
Ref. 0

Chapter 3: Bitfile Server Functions

Chapter 4: Storage Server Functions

Chapter 5: Mover Functions

Chapter 6: Physical Volume Library Functions

Chapter 7: Physical Volume Repository Functions

Chapter 8: Storage System Manager Functions

Chapter 9: Location Server Functions

Appendix A: Acronyms

Appendix B: References

Typographic and Keying Conventions

This chapter defines the Name Server API
specifications and associated data definitions..

This chapter defines the Name Server API
specifications and associated data definitions..

This chapter defines the Mover API
specifications and associated data definitions..

This chapter defines the Physical Volume
Library API specifications and associated data
definitions..

This chapter defines the Physical Volume
Repository specifications and associated data
definitions..

This chapter defines the System Manager API
specifications and associated data definitions.

This chapter defines the Location Server API
specifications and associated data definitions.

This appendix provides a list of acronyms used
document.

This appendix lists documents cited in the text
as other reference material.

This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you must use literally, such as

functions, commands or keywords.

Italic Italic words or characters represent variable values to be supplied.

[] Brackets enclose optional items in syntax and format descriptions.

{} Braces enclose a list of items to select in syntax and format descriptions.

HPSS Programmer’s Ref., Vol. 2 April 1999 Xiii

Rev. 0

Chapter 1: Overview

1. Overview

The High Performance Storage System (HPSS) provides scalable parallel storage systems for highly
parallel computers as well as traditional supercomputers and workstation clusters. Concentrating on
meeting the high end of storage system and data management requirements, HPSS is scalable and is
designed for large storage capacities, and to use network-connected storage devices to transfer data at
rates up to multiple gigabytes per second. Listed below is a description of the core HPSS servers.

1.1. Name Server

1.1.1. Purpose

The purpose of the Name Server is to map a name to an HPSS object. Names are generally human
readable ASCII strings of 255 characters or less. Objects are files, directories, junctions, filesets, or links
(symbolic links and hard links). In addition to mapping names to objects, the Name Server provides

access verification to objects. The implementation defined in this design document provides a POSIX
view of the name space which is a hierarchical structure consisting of directories, files, junctions and links.

1.1.2. Components

The Name Server uses a layered approach to inter-routine relationships. The software is layered as
defined below:

. Remote Interface Routines (RIR)

. Local Interface Routines (LIR)

. Database Interface Routines (DIR)
. System Interface Routines (SIR)

The RIR layer handles transaction processing, security functions and translates remotely invoked
functions to the appropriate local interface routine. This layer is also responsible for parsing path names

and implementing the "." and ".." directories. The LIR handle the requested function and make use of the
DIR layer to retrieve and store directory object metadata. The DIR layer makes use of Transarc’s Encina
Structured File System.

1.1.3. Constraints
The following constraints are being imposed upon HPSS as a result of this subsystem design:

. Hard links are only supported for files.

1.1.4. Libraries

Applications calling the Name Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a

HPSS Programmer’s Ref., Vol. 2 April 1999 1-1
Rev. 0

Chapter 1: Overview

libhpsslog.a
libgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.2. Bitfile Server

1.2.1. Purpose

The Bitfile Server provides the abstraction of logical bitfiles to its clients. A logical bitfile is a bit string that
is unconstrained in size and structure. A bitfile is identified by a Bitfile Server generated name called a
bitfile ID. Mapping of a human readable name to the bitfile ID must be provided by a Name Server
external to the Bitfile Server. Clients may reference portions of a bitfile by specifying the bitfile ID and a
starting address and length. The writes and reads to a bitfile are random and the writes may leave "holes
where no data has been written. The Bitfile Server supports the parallel read and write of data to bitfiles.
In conjunction with Storage Servers, the Bitfile Server maps logical portions of bitfiles onto physical
storage devices.

The Bitfile Server provides commands to allow the migration, purging, and staging of data in a storage
hierarchy.

1.2.2. Bitfile Server Components
The Bitfile Server consists of these major parts:
* Initialization

e Client APIs

» Storage System Management APIs.

Initialization starts up the Bitfile Server, makes connections needed to other servers, and sets up internal
tables.

Client APIs are essentially the user interface to the Bitfile Server. They allow bitfiles to be created, stored,
read, and allow bitfile attributes to be read and set.

Various APIs are used by both clients and SSM.

1.2.3. Constraints
The following constraints are being imposed upon HPSS as a result of this subsystem design:

. All transfer requests are for single bitfiles only. The multiple bitfiles allowed by the IOD will not be
supported.

1-2 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

. Files that are highly fragmented will cause system performance to be degraded.

. The bitfile must be open to do reads, writes, migrates, stages, purges, and various options of get
and set attributes.

. A reverse map field of all binary zeros is considered to be a null reverse map.

1.2.4. Libraries

Applications calling the Bitfile Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libtraniod.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.3. Storage Server

1.3.1. Purpose

The Storage Server provides a hierarchy of storage objects: storage segments, virtual volumes and
physical volumes. The server translates references to storage segments into references to virtual
volumes, and finally into physical volume references. It also schedules the mounting and dismounting of
removable media. Clients of the Storage Server will be the HPSS Bitfile Server at the segment interface
and the HPSS Storage System Manager at the virtual and physical volume interface.

1.3.2. Components

The Storage Server consists of these major parts:

. storage segment service
. virtual volume service
. physical volume service

The storage segment service is the conventional method for obtaining and accessing HPSS storage
resources. The server maps an abstract storage space, the storage segment, onto a virtual volume,
resolving segment addresses as required. The client is presented with a storage address space, with
addresses from 0 to N-1, where N is the byte length of the segment. Segments can be opened, created,
read, written, closed and deleted. Characteristics and information about segments can be retrieved and
changed.

HPSS Programmer’s Ref., Vol. 2 April 1999 1-3
Rev. 0

Chapter 1: Overview

The virtual volume service is the method provided by the Storage Server to group physical storage
volumes. The server maps the virtual volume address space onto the component physical volumes in a
fashion appropriate to the grouping. The client is presented with a virtual volume that can be addressed
from 0 to N-1, where N is the byte length of the virtual volume. Virtual volumes can be mounted, created,
read, written, unmounted and deleted. Characteristics of the volume can be retrieved and in some cases,
changed.

The physical volume service is the method provided by the Storage Server to access the physical storage
volumes in HPSS. Physical volumes can be mounted, created, read, written, unmounted and deleted.
Characteristics of the volume can be retrieved and in some cases, changed.

All three layers of the Storage Server can be accessed by appropriately privileged clients.

1.3.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:
* A storage segment cannot span virtual volumes.

* A physical volume cannot span multiple virtual volumes.

« Intermediate IORs for I/O requests will not be generated or provided by the Storage Server. 1/0
functions (read and write) are synchronous (e.g. They do not reply until the 1/O is complete; however,
it is possible for the client to issue parallel I/O requests to the server).

1.3.4. Libraries

Applications calling the Storage Server function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libtraniod.a
libgssmvr.a
libpdata.a
libpvl.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.4. Mover

1.4.1. Purpose

1-4 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

The purpose of the Mover is to transfer data from a source device to a sink device. A device can be a
standard I/O device with geometry (e.g., tape, disk, optical disk), or a device without geometry (e.g.,
network, memory). The Mover will retry requests and attempt to optimize requests, but will not take any
action that is outside the scope of what is requested by the Mover’s clients.
Additional support is provided for:

Disk devices.

Third party IPI-3 data transfers.

Sending intermediate responses with listen port addressing information.

Using a Mover to Mover data transfer control protocol.

1.4.2. Components

The Mover consists of these major parts:

e Mover Parent Task

* Mover Listen Task / Request Processing Task

» Data Movement

« Device Control

e System Management

The Mover Parent Task performs some of the Mover initialization functions, and spawns processes to
handle the Mover's DCE communications as well as the Mover's functional interface (which does not use
DCE pthreads).

The Mover Listen Task listens on a well known TCP port for incoming connections to the Mover, spawns
request processing tasks (forks processes in Releases 1 and 2), and monitors for completion of those
tasks. The Request Processing Task performs initialization and return functions common to all Mover
requests.

Data Movement supports client requests to transfer data to or from HPSS, and includes the mvr_Read
and mvr_Write interfaces. The ability to abort an outstanding data movement request is provided via the
mvr_Abort interface.

Device Control supports querying the current device read/write position (for use in a later search
operation), changing the current device read/write position and performing device specific operations, and
includes the mvr_DeviceGetAttrs_10D, mvr_DeviceSetAttrs_10D and mvr_DevSpec interfaces.
System Management supports querying and altering device characteristics and overall Mover state, and
includes the mvr_MVRGetAttrs, mvr_MVRSetAttrs, mvr_DeviceGetAttrs, mvr_DeviceSetAttrs,

mvr_ServerGetAttrs and mvr_ServerSetAttrs interfaces. Also supported is adding new devices and
removing existing devices via the mvr_CreateDevice and mvr_DeleteDevice interfaces.

1.4.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

HPSS Programmer’s Ref., Vol. 2 April 1999 1-5
Rev. 0

Chapter 1: Overview

. Due to conflicts between DCE and asynchronous I/O (in particular using DCE results in the
possibility of lost signals), the Mover data transfer and device positioning code will not use either
DCE RPC or DCE pthreads. Instead, the Mover will use the DCE marshalling routines and transfer
requests and replies over TCP streams.

. A process that utilizes DCE RPC and Pthreads will be spawned at Mover initialization to handle non
I/O requests (e.g., Mover state requests). Note that this requires that all machines running an HPSS
Mover also run DCE and Encina.

1.4.4. Libraries

Applications calling the Mover function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.5. Physical Volume Library

1.5.1. Purpose

The PVL manages all HPSS physical volumes. Clients can ask the PVL to mount and dismount sets of
physical volumes. Clients can also query the status and characteristics of physical volumes. The PVL
maintains a mapping of physical volume to cartridge and a mapping of cartridge to PVR. The PVL also
controls all allocation of drives. When the PVL accepts client requests for volume mounts, the PVL
allocates resources to satisfy the request. When all resources are available, the PVL issues commands
to the PVR(s) to mount cartridges in drives. The client is notified when the mount has completed.

1.5.2. Components

The PVL consists of these major parts:

. Volume mount service

. Storage system management service

The volume mount service is provided to clients like a Storage Server. Multiple volumes may be specified
as part of a single request. All of the volumes will be mounted before the request is satisfied. All volume
mount requests from all clients are handled by the PVL. This allows the PVL to prevent multiple clients
from deadlocking when trying to mount intersecting sets of volumes. The standard mount interface is
asynchronous. A notification is provided to the client when the entire set of volumes has been mounted.
A synchronous mount interface is also provided. The synchronous interface can only be used to mount a

1-6 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

single volume, not sets of volumes. The synchronous interface might be used by a non-HPSS process to
mount cartridges which are in a tape library, but not part of the HPSS system.

The storage system management service is provided to allow a management client control over HPSS
tape repositories. Interfaces are provided to import, export, and move volumes. When volumes are
imported into HPSS, the PVL is responsible for writing a label to the volume. This label can be used to
confirm the identity of the volume every time it is mounted. Management interfaces are also provided to
query and set the status of all hardware managed by the PVL (volumes, drives, and repositories).

1.5.3. Constraints
The following constraints are being imposed upon HPSS as a result of this subsystem design:

. No attempt is made to optimize volume mounts. They are satisfied on a first come, first served
basis. If a volume is mounted before it is requested by the PVL it may be used out of the normal
order unless the PVL determines that such use might result in a deadlock.

. Volume names are derived from the cartridge name and the side of the cartridge. Cartridge names
must be unique across an entire HPSS installation.

1.5.4. Libraries

Applications calling the Physical Volume Library function calls must link with the following libraries:

libpvl.a
libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgssmvr.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.6. Physical Volume Repository

1.6.1. Purpose
The PVR manages all HPSS cartridges. Clients can ask the PVR to mount and dismount cartridges.

Every cartridge in HPSS must be managed by exactly one PVR. Clients can also query the status and
characteristics of cartridges.

1.6.2. Components

The PVR consists of these major parts:

HPSS Programmer’s Ref., Vol. 2 April 1999 1-7
Rev. 0

Chapter 1: Overview

e Generic PVR service

* Ampex robot service

e STKrobot service

e 3494/ 3495 robot service

e Operator mounted device service

The generic PVR service provides a common set of APIs to the client regardless of the type of mount
device being managed. Functions to mount, dismount, inject, and eject cartridges are provided.
Additional functions to query and set cartridge metadata are provided. The mount function is
asynchronous. The PVR calls a well-known APl in the client when the mount has completed. For certain
devices, like operator mounted repositories, the PVR will not know when the mount has completed. In this
case, it is up to the client to determine when the mount has completed. The client may poll the devices or
use some other method. When the client determines a mount has completed, the client should notify the
PVR using one of the PVR’s APIs. All other PVR functions are synchronous. The generic PVR maintains
metadata for each cartridge managed by the PVR.

The Ampex robot service manages the Ampex DST 800 robotic device. This device mounts, dismounts,
and manages D2 cartridges for a set of Ampex D2 drives. The Ampex robot service maintains additional
metadata about each cartridge it manages.

The STK robot service manages the STK Silo robotic device. This device mounts, dismounts, and
manages 3480 / 3490 cartridges for a set of 3480 / 3490 drives. The STK robot service maintains
additional metadata about each cartridge it manages.

The 3494 / 3495 robot service manages the two IBM tape robots. These robots manage 3480 form factor
cartridges. The cartridges may be for 3480, 3490, or 3590 type drives. The robots, while physically very
different, are managed through virtually identical interfaces.

The operator mounted device service manages a set of cartridges that are not under the control of a
robotic device. These cartridges are mounted to a set of drives by operators. The Storage System
Manager is used to inform the operators when mount operations are required.

1.6.3. Constraints
The following constraints are being imposed upon HPSS as a result of this subsystem design:

. It is expected that the PVR's clients will be able to determine when cartridges are mounted. This
should be done with polling or some asynchronous natification. The client should also be able to
accept asynchronous notifications from the PVR for those times when the PVR is able to determine
that a cartridge is mounted.

1.6.4. Libraries

Applications calling the Physical Volume Repository function calls must link with the following libraries:

libpvr.a
libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a

1-8 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.7. System Manager

1.7.1. Purpose

The SSM System Manager is the contact point between clients, such as the SSM Data Server (which is
the graphical interface to the human operator or system administrator), and the other HPSS subsystems
Interfaces are provided to support external clients, in addition to the Data Server. The term Data Server
will be used to refer to the HPSS provided Data Server or other external clients of the System Manager.
All Data Server requests to other HPSS servers and all Data Server Encina accesses are made on the
client’s behalf by the System Manager. Operations provided by the System Manager to the Data Server
include configuration of Encina files, starting and shutting down servers, importing and exporting media,
control of devices and jobs, viewing and updating managed objects, and delogging.

All alarms, events, status messages, and notifications issued to SSM by other subsystems are received by
the System Manager and forwarded to the Data Server as appropriate, using the Data Server
client_Notify API.

The System Manager also uses the client_Notify API to notify the Data Server of changes in SSM data or
state, such as a change in the SSM Server List or a warning that the System Manager is shutting down.

1.7.2. Components

The System Manager consists of these major parts:
* Initialization

e System Manager Client Support

« Configuration

e Administrative Operations

* Managed Object Attribute Operations

e Device Management

« Job Management

« Delogging

» Storage and Media Operations

HPSS Programmer’s Ref., Vol. 2 April 1999 1-9
Rev. 0

Chapter 1: Overview

e Accounting
e Alarm, Event, and Status Message Processing

Initialization starts up the Bitfile Server, makes connections needed to other servers, and sets up internal
tables.

Initialization

At startup, the System Manager reads the HPSS Server Configuration File and builds a copy of it in
SSM_SM_server_config. From this copy, it builds the Server List SSM_SM_servers and initializes the
Server Network Connection Table SSM_SM_server_net. The Server List includes information needed by
the System Manager and the Data Server such as the descriptive name, uuid, server type, and execution
status of each server. The Server Network Connection Table includes information needed by the System
Manager to connect to each server, including interface specifications, binding handles, and connection
handles. At this point in startup, only the interface specification is defined; binding handles are deferred.

The System Manager next reads the necessary configuration files to build the other lists it shares with its
clients. It reads the Mover Device Configuration File and the PVL Drive Configuration File and builds from
the combined information from both files the Drive List, SSM_SM_drives, which contains information
needed by the System Manager and the Data Server such as the device and drive name and the
associated PVL, PVR, and Mover for each drive.

It reads the Class of Service Configuration File, the Storage Class Configuration File, the Hierarchy
Configuration File, the Migration Policy Configuration File, and the Purge Policy Configuration File and
constructs the Class of Service List, The Storage Class List, the Hierarchy List, the Migration Policy List,
and the Purge Policy List, which are needed by the Data Server for building selection lists and for
managing the storage class window.

Next the System Manager spawns the Server List monitor thread. In most cases, the function which
changes a list will enqueue a notification to the Data Server about the change, so every single change to
the list will result in a notification to the Data Server. In the case of the Server List, which changes very
frequently, a monitor thread is created which checks the list periodically and forwards it to the Data Server
if it has changed, so several changes might be made to the list before a copy is forwarded to the Data
Server.

Next the System Manager spawns a separate thread for each server to monitor that server’s execution
and connection status.

Finally, the System Manager registers its interfaces and enters a trdce_ServerListen.

System Manager Client Support

Data Servers make contact with the System Manager with ssm_Checkln, using the input ClientID
SSM_NEW_CLIENT to indicate an initial check-in. The System Manager returns a unique output Client/D
and then sends the new client a copy of each of the shared lists in separate notifications.

The client may check-in again with the System Manager at any time using the ClientID it was assigned at
its initial check-in. This should always be done when the client has temporarily lost and then regained
network connectivity to the System Manager, first in order to get a current copy of all the shared lists, and
second to make certain the System Manager still recognizes the client. If the System Manager crashed
and restarted, for instance, it will not know about the client and will return a failure on the subsequent
check-in; the client should then repeat its initial check-in using SSM_NEW _CLIENT as its InClientD.

Clients discontinue contact with the System Manager by calling ssm_CheckOut. If the System Manager
loses contact with a Data Server for more than SSM_SM_CLIENT_MAX_FAILTIME seconds, it will

1-10 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

automatically check him out.

Whenever the System Manager receives notifications of alarms, events, status messages, changes in
managed object attributes, tape mount requests or tape check-in requests, it forwards these to the
appropriate clients using the client_Notify APl. Whenever one of the shared lists changes, the System
Manager informs each Data Server by calling client_Notify with an SSM_LIST_N type notification
containing the appropriate updated list.

Notifications are queued to avoid flooding the Data Server, which results in losing contact with it. There
are five notification queues:

SSM_SM notify_q_data managed object attribute changes.
SSM_SM_notify_q_list list changes and informational notifications.
SSM_SM_notify_q_log alarms, events, status messages.
SM_SM_notify_q_tape tape mount notifications.
SSM_SM_notify_q_tape_checkin tape check-in notifications.

Since there is only one kind of informational notification and it is only used as the System Manager is
shutting down, it was combined with the list queue.

Incoming notifications are throttled in order to keep the System Manager memory usage from growing too

fast. When the queue reaches a certain limit, the notification function waits till it shrinks before adding the
new item to the queue.

Configuration

HPSS servers store permanent data about server, device, media, and policy configuration in Encina
configuration files. With the following APIs a Data Server may request the System Manager to read and
update HPSS configuration files:
ssm_ConfigAdd Adds one entry to a file.
ssm_ConfigDelete Deletes one entry from a file.
ssm_ConfigGetDefaultReturns a default configuration file entry of the type requested.
The Data Server calls ssm_ConfigGetDefault to obtain default
data as a starting point whenever the user asks to add a new
entry to a file.
ssm_ConfigRead Reads the specified entry from Encina and returns it.
ssm_ConfigUpdate Modifies one entry in a file.
SSM does not have permission to write to all configuration files.
Some subsystems require notification whenever their configuration files change in the form of an
ST_REINIT to their server managed object Administrative State. Some subsystems require that SSM not
change their configuration at all while they are executing. The configuration APIs take the appropriate

action for each server.

Administrative Operations

Administrative operations are provided to the Data Server by the ssm_Adm function and include:

Starting one or all servers

HPSS Programmer’s Ref., Vol. 2 April 1999 1-11
Rev. 0

Chapter 1: Overview

Reinitializing one or all servers
Shutting down one or all servers
Forcing a halt of one or all servers
Setting a server’s state to REPAIRED
Forcing connection to a server
Shutting down HPSS

To an extent, many of these are functions of setting the Administrative State attribute on the server
managed object. Changes to managed objects are normally handled by ssm_AttrSet. However, the
System Manager requires that changes to a server's Administrative State be made through the ssm_Adm
function in order to make it easier to do any special processing required for the change. For example,
halting a server involves first setting his Administrative State to ST_HALT, but most servers never return
from such a request, as they shut down immediately. The System Manager must then ask the startup
demon whether the server is still running, and ask him to kill the server if he is .

The Repair function is provided to enable the human operator to inform the server that some error
condition previously reported by the server has been corrected. The subsequent action taken by the
server is up to that server, but in general the server is expected to reexamine the area of error and clear
its associated error flags accordingly.

The "Connect to server" function is provided to allow the operator to ask the System Manager to attempt
connection immediately to the specified server. The System Manager will automatically check
connections at a specified interval.

Managed Object Attribute Operations

While they are executing, HPSS servers store current and volatile data about server, device, and media
configuration in data structures called managed objects. In some cases, the same data structure is used
to define both the managed object and the corresponding Encina configuration file entry; in other cases
the attributes defined for the managed object overlap those defined for the configuration file; in still other
cases there is no corresponding managed object for a configuration file. In general, the most current
information about an entity is to be found by asking the server about its managed object rather than by
reading the configuration file.

Managed object attributes may be viewed by a Data Server with ssm_AttrGet and modified by
ssm_AttrSet. The ssm_AttrReg function allows a Data Server to register to receive notifications of
changes in specified attributes of a managed object.

In practice, a GUI Data Server uses ssm_AttrReg whenever a user opens a managed object window, so
that he can keep the window refreshed with the latest information from the server. A Data Server also
uses ssm_AttrReg to register for the OpState on servers, drives, and the generic volumes, so he can
monitor the status of the system. A GUI Data Server may use ssm_AttrGet to poll certain servers for
statistics, and ssm_AttrSet when users modify writeable fields on managed object windows.

The System Manager maintains a table of the attributes for which each Data Server is registered,
SSM_SM _registered_mo. When it receives a data change notification from a server, it searches this table
and notifies the clients who are registered to receive that notification using the client_Notify API.

The APIs with which servers notify the System Manager of managed object attribute changes are:

API: Server: Managed Object:
ssm_BitfileNotify BFS bitfile
ssm_LogFileNotify Log Daemon logfile
ssm_SFSNotify Metadata Monitor SFS
1-12 April 1999 HPSS Programmer’s Ref., Vol. 2

Rev. 0

Chapter 1: Overview

ssm_MPSNotify MPS mps
ssm_MPS_SClassNotify MPS storage class
ssm_DeviceNotify Mover device
ssm_MVRNotify Mover mover
ssm_NFS2_StatsNotify NFS Daemon nfs statistics
ssm_NSNotify Name Server name server
ssm_DriveNotify PVL drive
ssm_PVLNotify PVL pvl
ssm_QueueNotify PVL queue
ssm_RequestNotify PVL request
ssm_VolNotify PVL volume
ssm_CartNotify PVR cartridge
ssm_PVRNotify PVR pvr
ssm_ServerNotify All server
ssm_MapNotify Storage Server storage map
ssm_PVNotify Storage Server physical volume
ssm_SSNotify Storage Server storage segment
ssm_SsrvNotify Storage Server storage server
ssm_VVNotify Storage Server virtual volume

Device Management

Device Management operations include viewing device information, varying drives online and offline,
forcing drive dismounts, and relaying mount request information.

Viewing device information is accomplished by calling the ssm_AttrGet or ssm_AttrReg function for both
the Mover device managed object and the PVL drive managed object.

Varying drives online and offline is accomplished by setting the Administrative State of the PVL drive
managed object to ST_UNLOCKED or ST_LOCKED, respectively, and so is accomplished by calling
ssm_AttrSet.

The ssm_DriveDismount function enables the operator to force a dismount of a drive in the event the
PVR does not automatically perform the dismount.

The PVR sends the System Manager notifications of mount requests and mount completions so that
mount requests for human-operated PVRs can be displayed and so that mount requests for robot-
operated PVRs which get stuck can be noticed. The System Manager receives these notifications with
ssm_MountNotify, and forwards them to all Data Servers using the client_Notify API. The PVR also
sends the System Manager tape check-in notifications to display a list of cartridges for the operator to
insert into the 1/O port. The System Manager receives these notifications with ssm_TapeCheckInNotify,
and forwards them to all Data Servers using the client_Notify API.

Job Management

Job management operations include displaying the job queue and canceling jobs.

Viewing the job queue is accomplished by calling ssm_AttrGet or ssm_AttrReg for the PVL queue
managed object.

Canceling jobs is performed by calling ssm_JobCancel.

HPSS Programmer’s Ref., Vol. 2 April 1999 1-13
Rev. 0

Chapter 1: Overview

Delogging

The ssm_Delog function retrieves selected records of the HPSS alarm and event log and places the
output in a UNIX file. A GUI Data Server might open a window to display the file and allow the operator to
browse it. For this to work, the UNIX file must be accessible by both the System Manager, which
executes the delog program, and by Sammi, which opens the window to view the file.

Storage and Media Operations

The storage and media operations allow the operator to view attributes of cartridges and the storage data
structures built upon them and to define cartridges to the PVL and the Storage Server.

Viewing attributes of a cartridge is a function of getting the PVR cartridge managed object attributes and is
performed by calling ssm_AttrGet or ssm_AttrReg.

Defining cartridges to the PVL is performed with ssm_Cartlmport, and removing the cartridges from the
PVL is performed with ssm_CartExport. Cartridges may be moved from one PVR to another with
ssm_CartMove.

Defining cartridges to the Storage Server means defining the Storage Server resource management data
structures for the cartridges, which include physical volumes, virtual volumes, and storage segment maps.
It is accomplished by calling ssm_ResourceCreate. The structure definitions are removed from the
Storage Server with the ssm_ResourceDelete function. Volumes may be repacked with
ssm_ResourceRepack and reclaimed with ssm_ResourceReclaim. Repack and reclaim are
implemented very minimally from SSM in the current release; not all the options supplied by the
command-line programs are available from SSM.

Functions not implemented in the current release include deleting inactive storage maps, listing all

cartridges, labeling cartridges, auditing the PVR, dismounting physical volumes, and dismounting
cartridges.

Accounting

The ssm_AcctRun API starts an execution of the accounting program. The ssm_AcctChange API
changes the account id on a specified bitfile.

Alarm, Event, and Status Message Processing

The logger sends selected alarms, events, and status messages to the System Manager based on the
settings in the HPSS Log Policy File. The System Manager forwards all received alarms, events, and
status messages to all Data Servers using the client_Notify API.

The API with which the logger notifies the System Manager for all three types of message is
ssm_LogMsgNotify.

1.7.3. Constraints

The following constraints are being imposed upon HPSS as a result of this subsystem design:

. Data Server Clients, those programming to the APIs provided in the ssm_client_if interface, must
run under a principal which has control permission on the System Managers’s Security Object. Other

clients, those programming only to the notification APIs, do not require control permission.

Data Server Clients are expected to provide the System Manager a client_Notify API to receive

1-14 April 1999 HPSS Programmer’s Ref., Vol. 2
Rev. 0

Chapter 1: Overview

asynchronous notifications. Clients who do not provide this api will be automatically checked out by the
System Manager.

1.7.4. Libraries

Applications calling the System Manager function calls must link with the following libraries:

libmetadata.a
libhpsscs.a
libhpsscomm.a
libhpsslog.a
libhpssgss.a
libhsec.a
libhandles.a
libEncina.a
libEncClient.a
libEncSfs.a
libdce.a
libpthreads.a

1.8. Location Server

1.8.1. Purpose

The purpose of the Location Server (LS) is to provide a service which allows various HPSS servers to
locate other HPSS servers both in the local site and at remote sites. The Location Server also provides
Class of Service (COS) selection to the HPSS Client API by maintaining local COS statistics obtained
from local Bitfile (BFS) servers.

1.8.2. Components

The Location Server consists of two major parts:
. Client cache library

. Server interface

The Client Cache Library (CCL) provides access for a client (such as the Client API) to the Location
Server's Client Interface through a client side cache. This allows a client to access Location Server
information while reducing network traffic. An additional benefit of the CCL is that it performs automatic
retries of client requests and randomly rebinds to replicated Location Servers as needed. Functions are
included which map between Server UUIDs and Locations, locate BFSs by using COS hints, locate the
local root Name Server and locate remote Location Servers by site. The CCL functions provided are
contained in a library that is totally separate from the Location Server code.

Th